Kontakt

Dr. Alberto Sanna
Telefon:+49 228 525-304
E-Mail:asanna@...

Max-Planck-Institut für Radioastronomie, Bonn

Prof. Dr. Karl M. Menten
Direktor und Leiter der Forschungsabteilung "Millimeter- und Submillimeter-Astronomie"
Telefon:+49 228 525-297

Max-Planck-Institut für Radioastronomie, Bonn

Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Telefon:+49 228 525-399

Max-Planck-Institut für Radioastronomie, Bonn

Originalveröffentlichung

Links

Die ferne Seite der Milchstraße

Vermessung der Spiralstruktur für ein besseres Bild unserer Heimatgalaxie

12. Oktober 2017

Astronomen vom Max-Planck-Institut für Radioastronomie in Bonn und vom amerikanischen Harvard-Smithsonian Center for Astrophysics haben mit dem „Very Long Baseline Array“ die Entfernung zu einem Sternentstehungsgebiet vermessen, das sich jenseits des Galaktischen Zentrums auf der anderen Seite der Milchstraße befindet. Ihr Messresultat bringt sie tief in den „Terra Incognita“-Bereich unserer Galaxis und verdoppelt den bisherigen Rekordwert für eine Entfernungsbestimmung innerhalb der Milchstraße.

Die Ergebnisse werden am 13. Oktober in der Fachzeitschrift „Science“ veröffentlicht.
<p class="Body"><em>Künstlerische Darstellung der Milchstraße mit der Position der Sonne und dem  Sternentstehungsgebiet (Maserquelle</em><em>G007.47+00.05) auf der entgegen gerichteten Seite im Scutum-Centaurus-Spiralarm.</em></p>
<p class="Body"><em> </em></p> Bild vergrößern

Künstlerische Darstellung der Milchstraße mit der Position der Sonne und dem  Sternentstehungsgebiet (MaserquelleG007.47+00.05) auf der entgegen gerichteten Seite im Scutum-Centaurus-Spiralarm.

 

[weniger]

Entfernungsbestimmungen sind entscheidend für das Verständnis des strukturellen Aufbaus der Milchstraße. Das meiste Material in unserer Galaxis, die prinzipiell aus Sternen, Gas und Staub aufgebaut ist, befindet sich in einer flachen Scheibe, in die auch unser Sonnensystem eingebettet ist. Da wir unsere Milchstraße nicht von außerhalb betrachten können, kann ihre Struktur einschließlich des Verlaufs ihrer Spiralarme nur durch die Bestimmung des Abstands zu einzelnen Objekten an unterschiedlichen Positionen der Galaxis vermessen werden.

Die Astronomen verwenden dafür die Messtechnik der trigonometrischen Parallaxe, die Friedrich Wilhelm Bessel im Jahre 1838 erstmalig verwendet hat, um die Entfernung zu dem Stern 61 Cygni im Sternbild Schwan zu bestimmen. Diese Technik vermisst die scheinbare Verschiebung der Position eines astronomischen Objektes am Himmel bei der Betrachtung von entgegengesetzten Positionen der Erdbahn bei ihrem Lauf um die Sonne. Der Effekt kann dadurch veranschaulicht werden, dass man einen Finger unmittelbar vor die Nase hält und abwechselnd jeweils ein Auge schließt – der Finger scheint dabei von einer Position zur anderen zu hüpfen.

Die Messung des Winkels der scheinbaren Positionsverschiebung eines Himmelsobjekts ermöglicht den Forschern die Anwendung einfacher Trigonometrie, um daraus direkt die Entfernung zu diesem Objekt abzuleiten. Je kleiner der gemessene Winkel, desto größer die Entfernung. Im Rahmen des “Bar and Spiral Structure Legacy” (BeSSeL) Projekts ist es nun möglich, Parallaxen in der Milchstraße mit dem „Very Long Baseline Array“ (VLBA), einem kontinentalen Radioteleskop-Netzwerk mit zehn über Nordamerika, Hawaii und die Karibik verteilten Einzelteleskopen 1000 mal genauer zu bestimmen als es für Bessel möglich war. Im vorliegenden Fall entspricht der gemessene Wert dem Winkeldurchmesser eines Fußballs auf der Oberfläche des Mondes.   

“Mit dem VLBA können wir nun die gesamte Ausdehnung unserer Milchstraße genau vermessen”, sagt Alberto Sanna vom Bonner Max-Planck-Institut für Radioastronomie (MPIfR).

Die neuen VLBA-Beobachtungen aus den Jahren 2014 und 2015 ergeben eine Entfernung von mehr als 66.000 Lichtjahren für das Sternentstehungsgebiet G007.47+00.05 auf der entgegengesetzten Seite der Milchstraße, weit jenseits des Galaktischen Zentrums in einer Entfernung von 27.000 Lichtjahren. Der vorherige Rekord für eine Parallaxenmessung in der Milchstraße lag bei rund 36.000 Lichtjahren.

“Die meisten Sterne und das meiste Gas in unserer Milchstraße liegen innerhalb der mit der neuen Messung erzielten Reichweite. Mit dem VLBA haben wir jetzt das Potential, eine genügende Anzahl von Entfernungen zu abzuleiten, um damit Form und Verlauf der Spiralarme in unserer Galaxis zu bestimmen“, erklärt Alberto Sanna.

Mit den hier beschriebenen VLBA-Beobachtungen wurde die Entfernung zu einem Sternentstehungsgebiet in unserer Milchstraße bestimmt. Diese Gebiete umfassen Bereiche, in denen Wasser- und Methanolmoleküle als natürliche Verstärker von Radiosignalen wirken – diese sogenannten Maser sind in Radiowellen das Äquivalent zu Lasern im Bereich des sichtbaren Lichts. Der Masereffekt führt zu starken und leicht messbaren Signalen für die Beobachtung mit Radioteleskopen.  

In der Milchstraße gibt es Hunderte solcher Sternentstehungsgebiete mit darin enthaltenen Maserquellen. „Wir haben insgesamt eine Vielzahl von Meilensteinen für unser Vermessungsprojekt. Aber diese hier ist etwas ganz spezielles: ein Blick quer durch die Milchstraße entlang ihres Zentrums bis weit hinaus auf die andere Seite“, sagt Karl Menten, ebenfalls vom MPIfR.

Das Ziel der Astronomen ist aufzuzeigen wie unsere Milchstraße genau aussehen würde, wenn man sie und von oben aus etwa einer Million Lichtjahre Entfernung auf die gewaltige Spirale blicken könnte, statt sie aus der Scheibe heraus untersuchen zu müssen. Diese Aufgabe wird noch eine Reihe von weiteren Beobachtungen erfordern sowie eine Menge mühevoller Arbeit in der Datenanalyse. Aber, so sagen die Wissenschaftler: die Werkzeuge für das Projekt sind vorhanden. Wie lange wird es noch dauern? 

“Innerhalb der nächsten zehn Jahre sollten wir ein ziemlich komplettes Bild erhalten“, schließt Mark Reid vom Harvard-Smithsonian Center for Astrophysics.

[DF/njn]

----------------------------------

Das Forscherteam umfasst Alberto Sanna vom Max-Planck-Institut für Radioastronomie (MPIfR), den Erstautor, zusammen mit seinen Kollegen Mark Reid und Thomas Dame vom Harvard-Smithsonian Center for Astrophysics sowie Karl Menten und Andreas Brunthaler, beide vom MPIfR. Die Ergebnisse werden in der Fachzeitschrift “Science” (Ausgabe vom 13. Oktober) veröffentlicht.

Das “Long Baseline Observatory” (LBO) betreibt das „Very Long Baseline Array“ (VLBA) als Einrichtung der “National Science Foundation” (NSF) unter einem Kooperationsvertrag der „Associated Universities, Inc.“

Der “Bar and Spiral Structure Legacy Survey” (BeSSeL) ist ein VLBA-Schlüsselprogramm (Key Science project). Die Namensgebung erfolgte zu Ehren von Friedrich Wilhelm Bessel (1784-1846), der die erste Sternparallaxe bereits im Jahr 1838 vermessen hat. Ziel des Programms ist die Untersuchung der Spiralstruktur und der Kinematik unserer Milchstraße.

<div>
<p><em>Die Entfernungsbestimmung erfolgt über die Positionsverschiebung eines Himmelsobjekts, beobachtet von entgegengesetzten Seiten des Umlaufs der Erde um die Sonne (Methode der trigonometrischen Parallaxe).</em></p>
</div> Bild vergrößern

Die Entfernungsbestimmung erfolgt über die Positionsverschiebung eines Himmelsobjekts, beobachtet von entgegengesetzten Seiten des Umlaufs der Erde um die Sonne (Methode der trigonometrischen Parallaxe).

[weniger]
 
Zur Redakteursansicht
loading content