Adlerblick in den Orionnebel

Infrarot-Interferometrie liefert Bilder mit bisher unerreichter Schärfe

2. April 2009

Von der Erde aus erscheint ein Auto auf der Oberfläche des Mondes unter einem Winkel von rund zwei Tausendstel Bogensekunden. Um es zu erfassen, müsste ein Teleskop etwa 200 Meter Spiegeldurchmesser aufweisen. Dasselbe mit den heute verfügbaren, ungleich kleineren Teleskopen zu erreichen, verlangt optische Tricks - wie die Infrarot-Interferometrie. Mit dieser Technik hat jetzt ein internationales Team unter der Leitung von Stefan Kraus und Gerd Weigelt vom Bonner Max-Planck-Institut für Radioastronomie einen Rekord gebrochen: Mit dem "Very Large Telescope Interferometer" der Europäischen Südsternwarte ESO gelang den Forschern das bisher schärfste Bild des jungen Doppelsterns Theta 1 Ori C inmitten des Trapez-Sternhaufens im Orion.

Theta 1 Ori C ist der hellste Stern im der Erde nächstgelegenen Entstehungsgebiet massereicher junger Sterne. Die neuen Resultate zeigen deutlich voneinander getrennt zwei Einzelsterne in einem Doppelsternsystem. Die Messungen haben die extrem hohe Winkelauflösung von etwa zwei Tausendstel Bogensekunden. Die Forscher waren in der Lage, die Bahndaten des Doppelsternsystems zu bestimmen, außerdem die Massen der beiden Einzelsterne zu 38 und 9 Sonnenmassen sowie die Entfernung des Systems (1350 Lichtjahre).

Die Infrarot-Interferometrie ist eine neuartige astronomische Messtechnik, die eine viel höhere Winkelauflösung zu liefern vermag, als konventionelle Messungen mit großen astronomischen Teleskopen. Sie ermöglicht es den Astronomen, die mit einer Reihe von Einzelteleskopen aufgenommene Strahlung zu einem sehr scharfen virtuellen Gesamtbild zu kombinieren. So benutzten die Forscher am "Very Large Telescope Interferometer" (VLTI) das Interferometrie-Strahlvereinigungs-Instrument AMBER ("Astronomical Multi-BEam combineR"), das die direkte Erzeugung von Bildern bei Wellenlängen im nahen Infrarot ermöglicht.

Zum Prüfstern wählten die Astronomen Theta 1 Ori C, die massereichste und leuchtkräftigste Sonne im zentralen Orionnebel. Diese Region bietet wegen ihrer vergleichbaren Erdnähe einen einzigartigen Einblick in die Bildungsprozesse der Sterne. Die intensive Strahlung von Theta 1 Ori C ionisiert den gesamten Bereich des Orionnebels. Durch seinen starken Sternwind beeinflusst das Objekt auch die berühmten Proplyds ("protoplanetary disks") - junge Sterne, die noch von Staubscheiben umgeben sind, aus denen sich später Planetensysteme entwickeln werden.

Obwohl Theta 1 Ori C zunächst als Einzelstern erschien - und das sowohl in Beobachtungen mit konventionellen Fernrohren als auch mit dem Weltraumteleskop "Hubble" -, konnte das Team die Existenz eines lichtschwächeren Begleitsterns in geringem Abstand nachweisen. "VLT-Interferometrie mit AMBER hat uns zum ersten Mal ermöglicht, ein Bild dieses Doppelsternsystems mit einer spektakulären Winkelauflösung von nur zwei Tausendstel Bogensekunden zu gewinnen", sagt Stefan Kraus.

Die VLTI-Daten belegen, dass der Abstand zwischen den beiden Sternen im März 2008 nur etwa 20 Tausendstel Bogensekunden betragen hat. Die Abbildung zeigt das mit VLTI/AMBER erhaltene Bild sowie die Ergebnisse von Positionsmessungen des schwächeren Begleitsterns über die vergangenen 12 Jahre. Diese zusätzlichen Beobachtungen wurden mit der Technik der Bispektrum-Speckle-Interferometrie gewonnen. Dabei kamen Teleskope von 3,6 bis 6 Meter Spiegeldurchmesser zum Einsatz, die hochauflösende Beobachtungen auch bei optischen Wellenlängen bis hinunter zu 440 Nanometern (millionstel Millimeter) ermöglichten.

Die Zusammenstellung aller Messungen zeigt, dass der Begleitstern sich auf einer sehr exzentrischen Bahn mit einer Umlaufdauer von elf Jahren bewegt. Unter Anwendung des Dritten Keplerschen Gesetzes ließen sich die Massen beider Sterne zu 38 und 9 Sonnenmassen bestimmen.

Aus diesen Messungen konnten die Astronomen außerdem die sogenannte trigonometrische Entfernung des Sterns Theta 1 Ori C und damit des Zentralbereichs des gesamten Orion-Sternentstehungsgebiets ableiten. Der Wert von 1350 Lichtjahren stimmt hervorragend mit dem Resultat überein, das eine Gruppe unter der Leitung von Karl Menten, ebenfalls vom Max-Planck-Institut für Radioastronomie, aus der Bestimmung trigonometrischer Parallaxen einiger anderer Sterne im Orionnebel erhalten hat.

Seit dem Jahr 1609, als Galileo Galilei zum ersten Mal ein Fernrohr gen Himmel richtete, hat sich die beobachtende Astronomie sowohl in der erfassbaren Wellenlänge als auch in der erreichbaren Auflösung erheblich weiterentwickelt. "Unsere Beobachtungen zeigen die faszinierende neue Bildqualität von VLTI. Die Anwendung der Technik der Infrarot-Interferometrie wird zweifellos zu einer Reihe fundamentaler neuer Entdeckungen führen", sagt Gerd Weigelt.

Zur Redakteursansicht