Pulsare als Atomuhren
Die Korrektur von Rotationsinstabilitäten macht Neutronensterne zu den besten Zeitmessern im Universum
Ein internationales Team von Astronomen hat das Verhalten von kosmischen Uhren untersucht und dabei ein Verfahren entdeckt, das sie zu den mit Abstand genauesten Zeitmessern im Universum macht. Die Wissenschaftler, darunter Michael Kramer vom Max-Planck-Institut für Radioastronomie in Bonn, werteten dazu die Signale von Pulsaren aus. Diese beobachten Forscher bereits mehrere Jahrzehnte mit dem 76-Meter-Radioteleskop am englischen Observatorium Jodrell-Bank. (Science Express, 24. Juni 2010)
Pulsare sind kompakte Überreste sehr massereicher Sterne, die am Ende ihres Lebens als Supernova explodierten. In einer solchen stellaren "Leiche", auch Neutronenstern genannt, ist die Materie extrem dicht gepackt, der Durchmesser auf etwa 20 Kilometer geschrumpft. Der erste Pulsar wurde im Jahr 1967 entdeckt. Mehr als 1700 solcher Objekte kennen die Astronomen heute, und sie untersuchen sie vor allem im Bereich der Radiofrequenzen. Pulsare drehen sich mit hoher Geschwindigkeit um ihre Achse, wobei sie gerichtete Strahlung aussenden. Überstreicht der Strahlungskegel die Erde, scheint der Stern kurz aufzublitzen - zu "pulsieren" (daher die Bezeichnung Pulsar).
Pulsare besitzen eine hohe Rotationsstabilität, das heißt, sie halten die Dauer einer Drehung um ihre Achse mit extremer Genauigkeit ein. Diese Tatsache hat unter anderem zur Entdeckung der ersten extrasolaren Planeten geführt und ermöglicht eine Reihe von Tests zur Überprüfung unserer Theorien über das Universum. Allerdings ist diese Rotationsstabilität nicht perfekt, und irreguläre Effekte in ihrem Umlauf schränken die Verwendung der Pulsare als hochpräzise Zeitmesser erheblich ein.
Das Forscherteam, angeführt von Andrew Lyne, hat Beobachtungen von Pulsaren mit dem 76-Meter-Lovell-Radioteleskop dazu verwendet, diese Abweichungen systematisch zu untersuchen und dabei eine Methode entdeckt, mit der sie sich korrigieren lassen. "Die besten Uhren der Menschheit benötigen alle eine Korrektur, etwa um die Effekte von schwankenden Temperaturen, unterschiedlichem atmosphärischem Druck, Feuchtigkeit oder dem lokalen Magnetfeld auszugleichen", sagt Lyne. "In unseren Beobachtungen haben wir eine Methode gefunden, unsere astrophysikalischen Uhren, die Pulsare, zu korrigieren."
Die Umdrehungsgeschwindigkeit, mit der die Pulsare um ihre Achse rotieren, nimmt mit der Zeit ganz langsam, aber unregelmäßig ab. Die Wissenschaftler haben herausgefunden, dass diese Unregelmäßigkeit vor allem dadurch entsteht, dass es zwei unterschiedliche Raten der Verlangsamung gibt. Die Pulsare wechseln zwischen beiden Raten hin- und her - und das abrupt und recht unvorhersehbar. "Diese Wechsel stehen im Zusammenhang mit der Form der Pulse, die der Pulsar aussendet", sagt George Hobbs, der ebenfalls an der Studie beteiligt war.
Ein solcher Puls oder Tick entsteht immer dann, wenn die Radiowellen des Pulsars auf das Teleskop treffen. Weil die Sterne, gesteuert durch ihr Magnetfeld, nur zwei gebündelte Strahlen aussenden, können die Forscher aus diesen Ticks die Umdrehungsgeschwindigkeit der Pulsare berechnen. Präzise Messungen der Pulsform über eine möglichst lange Zeitspanne erlauben es den Astronomen, die Abnahme der Pulsperiode extrem genau zu bestimmen und daraus einen Korrekturfaktor für den jeweiligen Pulsar abzuleiten. Damit wird die Ganggenauigkeit der Pulsaruhren erheblich gesteigert.
"Unsere Ergebnisse ermöglichen einen völlig neuen Zugang zu den extremen Bedingungen in der Umgebung von Neutronensternen", sagt Michael Kramer. "Sie haben das Potenzial, unsere ohnehin schon sehr präzisen Untersuchungen der Gravitation nochmals entscheidend zu verbessern." Kramer, Direktor am Max-Planck-Institut für Radioastronomie und Leiter der Forschungsgruppe Radioastronomische Fundamentalphysik, erhält für seine wissenschaftlichen Entdeckungen bei der Erforschung von Neutronensternen den Akademiepreis 2010 der Berlin-Brandenburgischen Akademie der Wissenschaften.
Die Forscher hoffen, dass die neuen Erkenntnisse über die Verlangsamung der Pulsperiode von Pulsaren die Wahrscheinlichkeit erhöht, mithilfe der am schnellsten rotierenden Neutronensterne endlich die ersten Gravitationswellen direkt in der Struktur der Raumzeit nachzuweisen. "Weltweit haben schon viele Observatorien versucht, über Pulsare diejenigen Gravitationswellen nachzuweisen, die bei der Bildung von supermassereichen Schwarzen Löchern im Universum ausgesandt werden", sagt Teammitglied Ingrid Stairs. "Mit unserer neuen Technik sollten wir in der Lage sein, die Signale von Gravitationswellen zu erfassen, die sich im Moment noch in den Unregelmäßigkeiten des Pulsarsignals verbergen."