Kontakt

Dr. Alan Roy
Telefon:+49 228 525-191
E-Mail:aroy@...

Max-Planck-Institut für Radioastronomie, Bonn

Prof. Dr. J. Anton Zensus
Direktor und Leiter der Forschungsabteilung "Radioastronomie/VLBI".
Telefon:+49 228 525-378

Max-Planck-Institut für Radioastronomie, Bonn

Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Telefon:+49 228 525-399

Max-Planck-Institut für Radioastronomie, Bonn

Links

Ein Scharfer Blick auf Schwarze Löcher

Ein Teleskop von Erdgröße verbindet Chile und den Südpol

21. April 2015

Koordinierte Beobachtungen mit dem APEX-Teleskop in Chile und dem Südpolteleskop, dem größten Teleskop der Antarktis markieren einen weiteren Schritt in Richtung eines detaillierten Abbilds des supermassereichen Schwarzen Lochs im Zentrum unserer Milchstraße in Richtung seiner finalen Grenze, des sogenannten Ereignishorizonts. Astronomen vom Max-Planck-Institut für Radioastronomie in Bonn beteiligen sich an diesen erfolgreichen Beobachtungen im Rahmen des „Event Horizon Telescopes“ – eines virtuellen Teleskops von der Größe der Erde.
Mit dem Südpol-Teleskop(SPT) und dem Atacama-Pfadfinder-Experiment (APEX) wurde im Januar 2015 erstmals eine gemeinsame Beobachtung im Rahmen eines “Very Long Baseline Interferometry” Experiments durchgeführt. Die beiden Teleskope haben dabei koordinierte Beobachtungen von zwei Himmelsobjekten durchgeführt, von Sagittarius A*, dem Schwarzen Loch im Zentrum unserer Milchstraße, und vom Zentralbereich der nahen Galaxie Centaurus A. Mit der Verküpfung dieser Beobachtungen haben sie ein virtuelles Teleskop von über 7000 Kilometern Durchmesser synthetisiert (gelbe Linie). Die Beobachtungen markieren einen erfolgreichen Schritt in Richtung eines globalen „Event Horizon“-Teleskopnetzwerks, in dem APEX in Chile, das Large-Millimeter-Teleskop in Mexiko, das Submillimeter-Teleskop in Arizona, das Submillimeter-Array und das James-Clerk-Maxwell-Teleskop in Hawaii sowie die Teleskope des Instituts für Radioastronomie bei Millimeterwellenlängen (IRAM) in Spanien und Frankreich (im Bild nicht sichtbar)miteinander verknüpft werden. Bild vergrößern

Mit dem Südpol-Teleskop(SPT) und dem Atacama-Pfadfinder-Experiment (APEX) wurde im Januar 2015 erstmals eine gemeinsame Beobachtung im Rahmen eines “Very Long Baseline Interferometry” Experiments durchgeführt. Die beiden Teleskope haben dabei koordinierte Beobachtungen von zwei Himmelsobjekten durchgeführt, von Sagittarius A*, dem Schwarzen Loch im Zentrum unserer Milchstraße, und vom Zentralbereich der nahen Galaxie Centaurus A. Mit der Verküpfung dieser Beobachtungen haben sie ein virtuelles Teleskop von über 7000 Kilometern Durchmesser synthetisiert (gelbe Linie). Die Beobachtungen markieren einen erfolgreichen Schritt in Richtung eines globalen „Event Horizon“-Teleskopnetzwerks, in dem APEX in Chile, das Large-Millimeter-Teleskop in Mexiko, das Submillimeter-Teleskop in Arizona, das Submillimeter-Array und das James-Clerk-Maxwell-Teleskop in Hawaii sowie die Teleskope des Instituts für Radioastronomie bei Millimeterwellenlängen (IRAM) in Spanien und Frankreich (im Bild nicht sichtbar)miteinander verknüpft werden.

[weniger]

Zur Realisierung eines virtuellen Teleskops von fast Erdgröße, mit dem es gelingen soll, den Ereignishorizont des Schwarzen Lochs im Zentrum unserer Milchstraße abzubilden, haben Astronomen erstmals den südlichsten Punkt der Erde, den Südpol, in ihre Messungen einbeziehen können. Dabei waren Wissenschaftler vom Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn beteiligt.

Im vergangenen Dezember ist ein internationales Team von Astronomen auf die Südhalbkugel der Erde gereist. Deutsche, chilenische und koreanische Wissenschaftler unter der Leitung von Alan Roy vom MPIfR gingen dabei nach Chile, die amerikanischen Wissenschaftler unter der Leitung von Dan Marrone von der Universität Arizona direkt zum Südpol, um ihre Teleskope im Rahmen des „Event Horizon“-Teleskopnetzwerks (EHT) als ein virtuelles Riesenteleskop zu betreiben. Durch die Zusammenschaltung von über die ganze Erde verteilten Teleskopen soll es mit dem EHT möglich werden, die ersten detaillierten Bilder von Schwarzen Löchern aufzunehmen.  

„Ziel des EHT wird es sein, die Allgemeine Relativitätstheorie Einsteins zu testen, den Fütterungsprozess von Schwarzen Löchern zu verstehen sowie deren Erzeugung von relativistischen Ausströmungen, und die Existenz des Ereignishorizonts, des ‚Rands‘ eines Schwarzen Lochs, erstmals experimentell zu bestätigen“, sagt Dan Marrone.

Am 13. Januar 2015 erfolgte erstmals eine erfolgreiche interferometrische Verbindung zwischen APEX und dem “Atacama Large Millimetre Array” (ALMA) zu einem virtuellen Teleskop von 2,08 km Durchmesser. Die Verbindung von APEX mit dem SPT stellt eine Erweiterung auf einen virtuellen Durchmesser von über 7000 km dar. Das ist die neueste Ergänzung zu einem über den ganzen Erdball verteilten Netzwerk von Radioteleskopen, die über die Technik der “Very Long Baseline Interferometry“ oder VLBI zu einem virtuellen Riesenteleskop verbunden werden. Je größer das Teleskop, desto schärfer und detailreicher wird das Bild, und mit der VLBI-Beobachtungstechnik arbeiten die miteinander verbundenen Teleskope wie ein Einzelteleskop mit dem Durchmesser der Abstände (oder der „Basislinien“) zwischen den einzelnen Teleskopen. Die schärfsten Bilder erreicht man somit über die Verbindung von Einzelteleskopen in möglichst großer Entfernung voneinander.

„Um das System zum Laufen zu bringen, mussten wir Spitzentechnologie zu einigen der abgelegendsten Plätze auf dieser Erde bringen“, sagt Alan Roy. „Es ist eine logistische Herausforderung, eine immer größere Zahl von Teleskopen zu integrieren, von Hawaii bis nach Europa, von Nordamerika bis nach Chile und zum Südpol, um damit eine zunehmend bessere Bildqualität und Bildschärfe zu erzielen.“

Das Schwarze Loch im Zentrum unserer Milchstraße, bekannt unter der Bezeichnung Sagittarius A* (als ‘A-Stern‘ ausgesprochen), ist zwar gut vier Millionen mal massereicher als die Sonne, aber es ist immer noch winzig in der Sicht von manchem Astronomen. Es liegt in einer Entfernung von rund 26000 Lichtjahren und dabei ist der Ereignishorizont kleiner als die Bahn des Planeten Merkur um die Sonne. Zum Vergleich: das ist ungefähr so, als wollte man von New York aus die Jahreszahl auf einer Ein-Cent-Münze in Deutschland lesen.

Mit bisher unerreichter räumlicher Auflösung,  mehr als tausendfach höher als die des Hubble-Teleskops, wird das EHT wirbelnde Gasströme abbilden, unmittelbar bevor sie jenseits des Ereignishorizonts verschwinden und jeden Kontakt mit dem Rest des Universums verlieren. Der Allgemeinen Relativitätstheorie zufolge bleibt das Schwarze Loch selbst unsichtbar, da nicht einmal Licht die gewaltige Schwerkraft überwinden kann. Jedoch könnte es sich als dunkle Silhouette gegen den Hintergrund abheben.

Das 10-m-Südpol-Teleskop steht in der Amundsen-Scott-Forschungsstation direkt am Südpol. Es hat im Januar 2015 erstmals an Messungen im Rahmen des globalen “Event Horizon”-Radioteleskopnetzwerks teilgenommen. Bild vergrößern

Das 10-m-Südpol-Teleskop steht in der Amundsen-Scott-Forschungsstation direkt am Südpol. Es hat im Januar 2015 erstmals an Messungen im Rahmen des globalen “Event Horizon”-Radioteleskopnetzwerks teilgenommen.

[weniger]

Nachdem Schwarzen Löcher erstmals vor hundert Jahren in Albert Einsteins Allgemeiner Relativitätstheorie vorhersagt wurden, wurde ihre Existenz durch eine große Anzahl astronomischer Beobachtungen in den nachfolgenden Jahren unterstützt. Inzwischen glaubt man, dass sich im Zentrum der meisten oder sogar von allen Galaxien ein supermassereiches Schwarzes Loch befindet, sowie eine Reihe von kleineren Schwarzen Löchern als Endstadien in der Entwicklung von ausgesprochen massereichen Sternen. In der Milchstraße kennt man ca. 25 dieser Kandidaten mit Massen zwischen fünf und zehn Sonnenmassen. Aber es ist bisher nicht gelungen, sie direkt zu beobachten oder Bilder dieser kosmischen Kuriositäten aufzunehmen.

Für die ersten Beobachtungen wurden die beiden miteinander verbundenen Teleskope auf zwei bekannte Schwarze Löcher ausgerichtet, und zwar Sagittarius A*, die Zentralquelle in unserer Milchstraße sowie die Galaxie Centaurus A in ca. 10 Millionen Lichtjahren Entfernung. In diesem Experiment haben das APEX-Teleskop in Chile und das Südpol-Teleskop in der Antarktis eine gemeinsame Beobachtung über einen Abstand von gut 7000 km durchgeführt. Die erhaltenen Daten stellen die bestaufgelösten Beobachtungen von diesen beiden Objekten am Südhimmel dar, sie übertreffen sogar den bisherigen Rekord bei einer aktiven Galaxie um einen Faktor 10! Der Nachweis einer kompakten Struktur in Centaurus A bei einer Auflösung von nur 50 Mikrobogensekunden entspricht dem 150fachen des Ereignishorizonts der Zentralquelle, unter der Annahme von 70 Millionen Sonnenmassen für das Schwarze Loch im Zentrum von Centaurus A..

„Centaurus A ist von Mitteleuropa aus nie über dem Horizont sichtbar, stand aber schon immer auf unserem Wunschzettel”, sagt Alan Roy, der diese Galaxie von seiner australischen Heimat her sehr gut kennt. „Es ist auch sehr eindrucksvoll, die Zentralquelle unserer Milchstraße, Sagittarius A*, in so hoher Auflösung zu sehen.“

Die Hinzufügung des SPT verbessert die jährlichen Experimente im Rahmen des EHT-Netzwerks, in denen Radioteleskope auf der ganzen Welt miteinander verknüpft werden. Eine Reihe von weiteren Teleskopen wurden inzwischen so ausgestattet, dass sie im kommenden Jahr ebenfalls an dem Experiment teilnehmen können, das damit sowohl geographisch als auch von der Anzahl der beteiligten Teleskope eine neue Bestmarke setzen wird. Die Beteiligung des MPIfR an dem Experiment erfolgt über APEX sowie über die  IRAM-Teleskope am Pico Veleta (Spanien) und auf dem Plateau de Bure (Frankreich), die alle bei einer kurzen Wellenlänge von 1,3 mm betrieben werden können.


Das Atacama Pathfinder Experiment (APEX) ist ein 12-m-Submillimeterteleskop in über 5100 m Höhe in der Chajnantorebene in den chilenischen Anden. Links vom Teleskop erkennt man am Himmel die Zentralregion der Milchstraße in Richtung des Sternbilds Schütze, in der sich das supermassereiche Schwarze Loch Sagittarius A* befindet. Bild vergrößern

Das Atacama Pathfinder Experiment (APEX) ist ein 12-m-Submillimeterteleskop in über 5100 m Höhe in der Chajnantorebene in den chilenischen Anden. Links vom Teleskop erkennt man am Himmel die Zentralregion der Milchstraße in Richtung des Sternbilds Schütze, in der sich das supermassereiche Schwarze Loch Sagittarius A* befindet.

[weniger]

Das Atacama Pathfinder Experiment (APEX) ist ein gemeinsames Projekt des Max-Planck-Instituts für Radioastronomie (MPIfR) mit dem Onsala Space Observatory (OSO) und der Europäischen Südsternwarte (ESO). Es dient dem Bau und Betrieb einer modifizierten Prototyp-Antenne von ALMA (Atacama Large Millimetre Array) als Einzelteleskop auf einem in 5100 Metern Höhe über dem Meeresspiegel gelegenen Standort in der Chajnantor-Ebene (Atacama-Wüste, Chile). Das Teleskop wurde von der VERTEX-Antennentechnik in Duisburg gebaut. Der Betrieb des Teleskops erfolgt durch die ESO.

Das Südpol-Teleskop (SPT) wird von einer internationalen Forschungskollaboration unter der Leitung der Universität von Chicago betrieben, unter teilweiser Unterstützung durch das von der „National Science Foundation“ (NSF) finanzierte „Physics Frontier Center” am Kavli-Institut für kosmologische Physik, die Kavli-Stiftung und die Gordon-und-Betty-Moore-Stiftung.

 
Zur Redakteursansicht
loading content