Twisted magnetic loop in the Giraffe galaxy IC 342
Magnetic-Field Discovery Gives Clues to Galaxy-Formation Processes
Astronomers making a detailed, multi-telescope study of a nearby galaxy have discovered a magnetic field coiled around the galaxy's main spiral arm. "This study helps resolve some major questions about how galaxies form and evolve," says Rainer Beck, of the Max-Planck Institute for Radio Astronomy (MPIfR), in Bonn, Germany.
The scientists studied a galaxy called IC 342, some 10 million light-years from Earth in the northern constellation Camelopardalis (the Giraffe), using MPIfR's 100-meter Effelsberg radio telescope in Germany and the National Science Foundation's Karl G. Jansky Very Large Array (VLA). Data from both radio telescopes were merged to reveal the magnetic structures of the galaxy.
The surprising result showed a huge, helically-twisted loop coiled around the galaxy's main spiral arm. Such a feature, never before seen in a galaxy, is strong enough to affect the flow of gas around the spiral arm.
"Spiral arms can hardly be formed by gravitational forces alone," continues Rainer Beck. "This new IC 342 image indicates that magnetic fields also play an important role in forming spiral arms."
The new observations provided clues to another aspect of the galaxy, a bright central region that may host a black hole and also is prolifically producing new stars. To maintain the high rate of star production requires a steady inflow of gas from the galaxy's outer regions into its center.
"The magnetic field lines at the inner part of the galaxy point toward the galaxy's center, and would support an inward flow of gas," says Rainer Beck.
The scientists mapped the galaxy's magnetic-field structures by measuring the orientation, or polarization, of the radio waves emitted by the galaxy. The orientation of the radio waves is perpendicular to that of the magnetic field. Observations at several wavelengths made it possible to correct for rotation of the waves' polarization plane caused by their passage through interstellar magnetic fields along the line of sight to Earth.
The Effelsberg telescope, with its wide field of view, showed the full extent of IC 342, which, if not partially obscured to visible-light observing by dust clouds within our own Milky Way Galaxy, would appear as large as the full moon in the sky. The high resolution of the VLA, on the other hand, revealed the finer details of the galaxy. The final image was produced by combining five VLA images made with 24 hours of observing time, along with 30 hours of data from Effelsberg.
Scientists from MPIfR, including Rainer Beck were the first to detect polarized radio emission in galaxies, starting with Effelsberg observations of the Andromeda Galaxy in 1978. Another MPIfR scientist, Marita Krause, made the first such detection with the VLA in 1989, with observations that included IC 342, which is the third-closest spiral galaxy to Earth, after the Andromeda Galaxy (M31) and the Triangulum Galaxy (M33).
The Effelsberg 100m radio telescope is one of the largest fully steerable radio telescopes on earth. It is operated by the Max-Planck-Institut für Radioastronomie in Bonn, Germany and located in a valley approximately 40 km southwest of Bonn. It is a very sensitive instrument in order to investigate magnetic fields in nearby galaxies by observations of polarized radio emission at different radio wavelengths.
The Very Large Array (VLA) is one of the world's premier astronomical radio observatories, consisting of 27 radio antennas of 25 m diameter each in a Y-shaped configuration on the Plains of San Agustin fifty miles west of Socorro, New Mexico. The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.