Highlights - allgemeinverständliche Pressemitteilungen von Forschungsergebnissen der Gruppe

Leichtestes Schwarzes Loch oder schwerster Neutronenstern?
Das MeerKAT-Teleskop entdeckt ein rätselhaftes Objekt an der Grenze zwischen Schwarzen Löchern und Neutronensternen

Ein internationales Team von Astronominnen und Astronomen unter der Leitung von Forschern des Max-Planck-Instituts für Radioastronomie hat mit dem MeerKAT-Radioteleskop ein faszinierendes Objekt unbekannter Natur im Kugelsternhaufen NGC 1851 entdeckt. Es ist schwerer als die schwersten bekannten Neutronensterne und gleichzeitig leichter als die leichtesten bekannten Schwarzen Löcher und befindet sich in einer Umlaufbahn um einen sich schnell drehenden Millisekunden-Pulsar. Dies könnte die erstmalige Entdeckung eines Doppelsternsystems aus Radiopulsar und Schwarzem Loch sein, und damit einer Sternenpaarung, die neue Tests der allgemeinen Relativitätstheorie von Einstein ermöglichen würde. mehr
Extreme Sterne haben einzigartige Eigenschaften, die eine Verbindung zu rätselhaften kosmischen Quellen herstellen könnten
Eine universelle Beziehung für Pulsare, Magnetare und möglicherweise schnelle Radiostrahlungsausbrüche

Ein internationales Forscherteam unter der Leitung von Michael Kramer und Kuo Liu vom Bonner Max-Planck-Institut für Radioastronomie hat eine seltene Art ultradichter Sterne, so genannter Magnetare, untersucht, um ein zugrunde liegendes Gesetz zu entdecken, das universell für eine ganze Reihe von Objekten, die so genannten Neutronensterne, zu gelten scheint. Dieses Gesetz gibt Aufschluss darüber, wie diese Quellen Radiostrahlung erzeugen, und es könnte eine Verbindung zu den rätselhaften Strahlungsausbrüchen (Fast Radio Bursts) herstellen, die im fernen Universum angesiedelt sind. mehr
Elektromagnetische Leckstrahlung von Satelliten gefunden
Wissenschaftler beobachten mit dem LOFAR-Teleskop zum ersten Mal niederfrequente Radiowellen von Satelliten in großen Konstellationen

Wissenschaftler führender Forschungseinrichtungen, darunter das Max-Planck-Institut für Radioastronomie in Bonn, haben mit dem Radioteleskop LOFAR 68 Satelliten von SpaceX beobachtet. Die Autoren kommen zu dem Schluss, dass sie elektromagnetische Leckstrahlung entdeckt haben, die von der Bordelektronik erzeugt wird. Sie könnte astronomische Forschung behindern und unterscheidet sich von den normalen Kommunikationssignalen, die bisher im Fokus der Radioastronomen lagen. Die Autoren fordern daher Satellitenbetreiber und Regulierungsbehörden dazu auf, die Auswirkungen auf die Radioastronomie sowohl bei der Entwicklung von Raumfahrzeugen als auch bei Regulierungsverfahren zu berücksichtigen. mehr
Ein neuer Zugang zum Universum
Präzise wie ein Uhrwerk: Pulsare öffnen ein neues Fenster im Gravitationswellen-Spektrum

Ein internationales Team europäischer Astronom:innen unter Beteiligung der Max-Planck-Institute für Radioastronomie  und Gravitationsphysik  hat zusammen mit indischen und japanischen Kolleg:innen die Ergebnisse von mehr als 25 Jahren Beobachtungen mit sechs der empfindlichsten Radioteleskope der Welt veröffentlicht. Zusammen mit anderen internationalen Kollaborationen haben das europäische und das indische Pulsar-Timing-Array unabhängig voneinander Beweise für Gravitationswellen bei extrem niedrigen Frequenzen im Nanohertz-Bereich gefunden, die von Paaren extrem massereicher Schwarzer Löcher in den Zentren verschmelzender Galaxien stammen könnten. Diese Ergebnisse sind ein entscheidender Meilenstein zur Erschließung eines neuen, astrophysikalisch bedeutenden Bereichs des Gravitationswellen-Spektrums. mehr
Gammastrahlen-Finsternisse werfen neues Licht auf Spinnenpulsare
26. Januar 2023
Sieben seltene Doppelsterne identifiziert und fünf Neutronensterne gewogen

Seit Jahrtausenden beobachtet die Menschheit das kosmische Finsternis-Ballett. Sonnen- und Mondfinsternisse, die der Jupitermonde und Sternbedeckungen durch Planeten und Asteroiden haben außerdem neue physikalische Messungen ermöglicht und Erkenntnisse über unser Universum geliefert. Mit Hilfe des NASA-Weltraumteleskops Fermi haben Astronom:innen nun sieben seltene Doppelsternsysteme identifiziert, in denen ein Neutronenstern von seinem Begleitstern verfinstert wird. So konnte das internationale Forschungsteam unter Leitung von Wissenschaftlern des Max-Planck-Instituts für Gravitationsphysik (Albert-Einstein-Institut) in Hannover und unter Beteiligung von Forschern vom MPIfR in Bonn diese Neutronensterne wiegen. Die genaue Bestimmung der Masse von Neutronensternen verbessert unser Verständnis von Materie unter extremen Bedingungen und hat Bedeutung für die Fundamentalphysik. In Zukunft könnten diese sieben Doppelsternsysteme neue Möglichkeiten bieten, Effekte von Einsteins allgemeiner Relativitätstheorie zu beobachten. mehr
Neun neue und exotische Geschöpfe für den Pulsar-Zoo
Neue Entdeckungen des Projekts „Transients and Pulsars with MeerKAT“

Neun Millisekunden-Pulsare, die meisten in seltenen und teils ungewöhnlichen Doppelsystemen: Das sind die ersten Ergebnisse einer gezielten Durchmusterung mit dem südafrikanischen Teleskop-Array MeerKAT. Ein internationales Team mit maßgeblicher Beteiligung von Forschenden des Max-Planck-Instituts für Gravitationsphysik (Albert-Einstein-Institut, AEI) und des Max-Planck-Instituts für Radioastronomie (MPIfR) wählte 79 unidentifizierte pulsar-ähnliche Quellen aus Beobachtungen des Fermi Gamma-ray Space Telescope der NASA aus und beobachteten sie mit MeerKAT im Radiobereich. Die Kombination dieser bewährten Methode mit einem Teleskop-Array der nächsten Generation hat deutliche Vorteile gegenüber früheren Durchmusterungen. Das Team entdeckte neun schnell rotierende Neutronensterne, die meisten mit ungewöhnlichen Eigenschaften. Bei zwei dieser Objekte wurden Pulsationen der Gammastrahlung, optische Gegenstücke und bei einem weiteren System Röntgenstrahlung entdeckt.

Das Team vom AEI suchte auch nach kontinuierlichen Gravitationswellen von einem der Neutronensterne. Diese Ergebnisse unterstreichen die Bedeutung von gezielten Suchen nach Radiopulsaren in unidentifizierten Gammastrahlenquellen. Diese dürften für weitere Erkenntnisse sorgen: Die Forschenden sind sicher, dass sich bei künftigen Beobachtungen noch mehrere Millisekunden-Pulsare entdecken lassen. mehr
RAS Group Award 2023 geht an MeerKAT
Das MeerKAT-Radioteleskop in Südafrika erhält prestigeträchtige Auszeichnung der Royal Astronomical Society

Das MeerKAT-Team erhält den „Group Award“ der „Royal Astronomical Society“ für eine Reihe spektakulärer radioastronomischer Beobachtungen, deren Höhepunkt Radiokarten der Region des Galaktischen Zentrums mit spektakulären Radioblasen darstellen. Darüber hinaus hat das MeerKAT-Team die Entwicklung von Wissenschaft und Technologie in Afrika unterstützt und die Technologie für das SKA-Observatorium einem Belastungstest unterzogen.

Das Max-Planck-Institut für Radioastronomie (MPIfR) und die Max-Planck-Gesellschaft in Deutschland sind am MeerKAT-Projekt beteiligt, einerseits durch die Bereitstellung von Empfängern im S-Band-Frequenzbereich für die einzelnen Parabolantennen von MeerKAT, andererseits durch ein Erweiterungsprojekt, das die Gesamtzahl der MeerKAT-Antennen von 64 auf 84 erhöht. Das bewirkt eine deutliche Verbesserung von Empfindlichkeit, räumlicher Auflösung und Bildqualität des Teleskops.

Gleichzeitig wird ein neues wissenschaftliches Ergebnis veröffentlicht, das auf MeerKAT-Beobachtungen unter der Leitung von MPIfR-Wissenschaftlern beruht und ein 20 Jahre altes Rätsel gelöst hat: neue Beobachtungen des Kugelsternhaufens M30 führten zur Wiederentdeckung eines lange Zeit vermissten Millisekunden-Pulsars in einer stark exzentrischen Doppelsternbahn. mehr
Energetische Winde wehen aus der Dreiecksgalaxie
Radiobeobachtungen zeigen ein komplexes Szenario beim Zusammenspiel von Sternentstehung und dem interstellaren Medium in der Galaxie M33

Untersuchungen des Zusammenspiels zwischen Sternentstehung und dem interstellaren Medium sind wichtig, um die Entwicklung von Galaxien zu verstehen. Ein internationales Forscherteam unter der Leitung von Fatemeh Tabatabaei unter Mitarbeit von mehreren Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie hat mit dem Karl G. Jansky Very Large Array (VLA) in New Mexico hochaufgelöste Radiobeobachtungen der Nachbargalaxie Messier 33 in der lokalen Gruppe durchgeführt. Die Ergebnisse zeigen, dass in M33 ein direkter Zusammenhang zwischen molekularem Gas und Sternentstehung besteht. Die Entstehung von massereichen Sternen verstärkt das Magnetfeld und erhöht die Zahl der hochenergetischen Elektronen der kosmischen Strahlung, die wiederum die Entstehung von galaktischen Winden und Ausströmungen begünstigen können. mehr
„Schlafendes“ Schwarzes Loch außerhalb unserer Galaxie entdeckt
Ein internationales Forschungsteam unter Beteiligung von Norbert Langer (AIfA & MPIfR Bonn) hat erstmals ein Schwarzes Loch stellarer Masse außerhalb der Milchstraße, nämlich in der Großen Magellanschen Wolke, nachweisen können. Die Entdeckung wurde während einer sechsjährigen Beobachtungskampagne mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) gemacht. Die Ergebnisse wurden in der Fachzeitschrift „Nature Astronomy“ veröffentlicht (Pressemitteilung der Universität Bonn vom 18. Juli 2022).
  mehr
Ein langsam rotierender Neutronenstern
Ungewöhnlicher Neutronenstern mit einer Umlaufdauer von 76 Sekunden wird auf einem Sternenfriedhof entdeckt

Ein internationales Team von Wissenschaftlern, darunter auch Astronomen des Max-Planck-Instituts für Radioastronomie in Bonn, hat einen ungewöhnlichen Neutronenstern entdeckt, der Radiostrahlung aussendet und sich alle 76 Sekunden um die eigene Achse dreht. Das Team, das von Mitgliedern der MeerTRAP-Gruppe („More Transients and Pulsars“) an der Universität Manchester geleitet wird, spricht von einer einzigartigen Entdeckung, da sich dieser Stern auf dem sogenannten Friedhof der Neutronensterne befindet, wo man überhaupt keine Pulsaraktivität erwartet. Die Entdeckung wurde mit dem MeerKAT-Radioteleskop in Südafrika gemacht. mehr
Astronomen enthüllen erstes Bild des supermassereichen Schwarzen Lochs im Herzen der Milchstraße
Eine bahnbrechende Entdeckung mit dem Event-Horizon-Teleskop verbessert unser Verständnis der Vorgänge im Zentrum unserer Galaxie

Astronomen haben das erste Bild des supermassereichen Schwarzen Lochs im Zentrum unserer Milchstraße enthüllt. Das Beobachtungsergebnis liefert überwältigende Beweise dafür, dass es sich bei diesem Objekt tatsächlich um ein Schwarzes Loch handelt, und gibt wertvolle Hinweise auf die Funktionsweise solcher Giganten, von denen man annimmt, dass sie im Zentrum der meisten Galaxien auftreten. Das Bild wurde von einem globalen Forschungsteam, der Event-Horizon-Teleskop- (EHT-) Kollaboration, unter Verwendung von Beobachtungen mit einem weltweiten Netz von Radioteleskopen erstellt.  Das Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn spielt eine wichtige Rolle in allen Phasen dieser Entdeckung, von der Gründung und dem Aufbau der EHT-Kollaboration bis hin zur endgültigen Erstellung und Interpretation der Beobachtungsergebnisse. mehr
Die Jagd nach dem Gravitationswellenhintergrund
Suche nach langwelligen Gravitationswellensignalen mit dem Fermi-Satelliten der NASA

Miteinander verschmelzende supermassereiche Schwarze Löcher in den Zentren wechselwirkender Galaxien füllen das Universum mit extrem niederfrequenten Gravitationswellen.  Astronomen haben bereits mit großen Radioteleskopen nach diesen Wellen gesucht, um die subtilen Auswirkungen dieser Raumzeitwellen auf die von Pulsaren in unserer Galaxie ausgesandten Radiowellen zu beobachten.  Ein internationales Team von Wissenschaftlern hat nun gezeigt, dass auch hochfrequente Gammastrahlung, aufgenommen mit dem Fermi-Teleskop der NASA, für diese Suche genutzt werden kann.  Die Verwendung von Gammastrahlen anstelle von Radiowellen ermöglicht einen klareren Blick auf die Pulsare und bietet eine unabhängige und ergänzende Möglichkeit zum Nachweis von Gravitationswellen. mehr
Kosmische Radioblitze an einem überraschenden Ort im Weltraum entdeckt
Lokalisierung einer wiederkehrenden Quelle von Radiostrahlungsausbrüchen in der nahen Galaxie M81

Astronomen wurden von einer Quelle mysteriöser Radiostrahlungsausbrüche am Himmel, so genannter schneller Radiobursts, im bisher geringsten Abstand von der Erde überrascht. Präzisionsmessungen mit Radioteleskopen haben ergeben, dass die Ausbrüche in einem Kugelsternhaufen, einem System alter Sterne, entstanden sind, und zwar auf eine Weise, die niemand so erwartet hatte. Der Ursprung in der nahen Spiralgalaxie M 81 stellt die der Erde nächstgelegene Quelle von Radioblitzen dar. mehr
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Weltweites Radioteleskop-Netzwerk verstärkt Signal, das auf Gravitationswellen extrem niedriger Frequenz im Nanohertzbereich hinweisen könnte

Ein internationales Team von Astronomen, darunter eine Reihe von Wissenschaftlern aus dem Bonner Max-Planck-Institut für Radioastronomie, gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt. Gravitationswellen mit Wellenlängen von mehreren Lichtjahren im Nanohertzbereich werden von der allgemeinen Relativitätstheorie vorhergesagt. Sie durchdringen die gesamte Raumzeit und könnten von Verschmelzungen der massereichsten schwarzen Löcher im Universum oder von Ereignissen kurz nach der Entstehung des Universums im Urknall herrühren. mehr
Einstein erneut erfolgreich

Einstein erneut erfolgreich

13. Dezember 2021
Die allgemeine Relativitätstheorie übersteht eine Reihe präziser Tests in einem extremen Doppelsternsystem

Ein internationales Team von Forschern aus zehn Ländern unter der Leitung von Michael Kramer vom Max-Planck-Institut für Radioastronomie in Bonn hat in einem 16 Jahre dauernden Experiment Einsteins allgemeine Relativitätstheorie mit einigen der bisher rigidesten Tests überprüft. Sie erforschten ein einzigartiges Sternpaar mit extremen Eigenschaften, zwei sogenannte Pulsare, die einander in einem Doppelsternsystem umkreisen. Bei den Untersuchungen, an denen sieben Radioteleskope auf der ganzen Welt beteiligt waren, traten neue relativistische Effekte zutage, die erwartet worden waren, nun aber zum ersten Mal beobachtet wurden. Die Theorie von Einstein, die zu einer Zeit entwickelt wurde, als man sich weder diese Typen von extremen Sternen noch die zu ihrer Untersuchung verwendeten Techniken vorstellen konnte, stimmt mit den Beobachtungen besser als 99,99 % überein. mehr
Jet der Riesengalaxie M87: Computermodellierung erklärt Beobachtungen am schwarzen Loch
22.November 2021
In verschiedenen Wellenlängen lässt sich ein gigantischer Teilchenstrahl beobachten, der von der elliptischen Riesengalaxie M87 ausgestoßen wird. Dr. Alejandro Cruz-Osorio und Prof. Luciano Rezzolla von der Goethe-Universität Frankfurt ist es gemeinsam mit einem internationalen Team unter Beteiligung von Prof. Michael Kramer (MPIfR Bonn) im Rahmen des BlackHoleCam-Forschungsprojekts  nach aufwändigen Supercomputer-Berechnungen gelungen, ein theoretisches Modell zur Entstehung dieses Jets zu entwickeln. Die berechneten Bilder stimmen außergewöhnlich gut mit den astronomischen Beobachtungen überein und bestätigen erneut Einsteins Allgemeine Relativitätstheorie (Pressemeldung der Universität Frankfurt vom 4. November 2021). mehr
Auf dem Weg zum Nachweis des Gravitationswellen-Hintergrunds im Nanohertz-Bereich
Das European Pulsar Timing Array markiert einen wichtigen Schritt nach vorn

Die Forschungs-Kollaboration EPTA (das „European Pulsar Timing Array“) berichtet über das Ergebnis einer 24-jährigen Beobachtungskampagne mit den fünf größten europäischen Radioteleskopen, die zu einem möglichen Signal für den seit langem gesuchten Gravitationswellenhintergrund (GWB) geführt hat, der von einander in geringem Abstand umkreisenden supermassereichen Schwarze Löchern in den Zentren von Galaxien erwartet wird. Die Kollaboration bringt Teams von Astronomen an den Instituten der großen europäischen Radioteleskope zusammen, darunter das 100-Meter-Radioteleskop Effelsberg des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn, sowie Forschergruppen, die auf die Datenanalyse und die Modellierung von Gravitationswellensignalen spezialisiert sind. Obwohl ein eindeutiger Nachweis damit noch nicht gelungen ist, so stellt es doch einen wichtigen Schritt im Bemühen dar, erstmals Gravitationswellen bei sehr niedrigen Frequenzen im Nanohertz-Bereich aufzuspüren. Das Auffinden des Signals ist das Ergebnis einer beispiellos detaillierten Analyse, bei der zwei unabhängige Methoden zum Einsatz kamen, und zeigt ebenfalls eine starke Ähnlichkeit mit den Ergebnissen der Analysen von anderen Teams. mehr
Mehr als tausend kosmische Explosionen in FRB 121102 von FAST entdeckt
13. Oktober 2021
Ein internationales Forschungsteam unter der Leitung von Di Li and Pei Wang (National Astronomical Observatories of the Chinese Academy of Sciences) unter Mitwirkung von Marylin Cruces, Michael Kramer und Laura Spitler vom Bonner Max-Planck-Institut für Radioastronomie hat mit dem „Five-hundred-meter Aperture Spherical radio Telescope“ (FAST) eine extreme Folge kosmischer Explosionen der Fast-Radio-Burst-Quelle FRB 121102 aufgezeichnet. Innerhalb von 47 Tagen wurden insgesamt 1.652 unabhängige Ausbrüche entdeckt (Nature-Veröffentlichung & NAOC-Pressemitteilung vom 13. Oktober 2021, in englischer Sprache). mehr
GLOSTAR – auf der Suche nach atomarem und molekularem Gas in der Milchstraße
Zwei leistungsfähige Teleskope führen zu den detailreichsten Radiokarten der nördlichen Ebene der Milchstraße

Durch die Kombination von zwei der leistungsfähigsten Radioteleskope der Erde hat ein internationales Forscherteam unter der Leitung des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn die bisher empfindlichsten Karten der Radiostrahlung großer Teile der nördlichen galaktischen Ebene erstellt. Die Daten wurden mit dem Karl G. Jansky Very Large Array (VLA) in New Mexico in zwei verschiedenen Konfigurationen und dem 100-m-Radioteleskop des MPIfR in Effelsberg bei Bonn aufgenommen. Damit steht erstmals eine Radiokartierung zur Verfügung, die alle Winkelskalen bis hinunter zu 1,5 Bogensekunden abdeckt. Das entspricht der scheinbaren Größe eines auf dem Boden liegenden Tennisballs, gesehen aus einem Flugzeug in der Luft. Im Gegensatz zu früheren Kartierungen beobachtet GLOSTAR nicht nur das Radiokontinuum im Frequenzbereich von 4-8 GHz mit voller Polarisation, sondern gleichzeitig auch Spektrallinien, die das molekulare Gas (aus Methanol und Formaldehyd) und atomares Gas über Radio-Rekombinationslinien nachzeichnen. mehr
Radioteleskop FAST weist 3D-Spin-Geschwindigkeitsausrichtung in einem Pulsar nach
Auf Grundlage von Beobachtungen mit dem chinesischen „Five-hundred-meter Aperture Spherical Radio Telescope“ (FAST) hat ein internationales Forscherteam unter der Leitung von Jumei Yao unter Beteiligung von Michael Kramer vom MPIfR den ersten Nachweis für eine dreidimensionale (3D) Ausrichtung der Spin-Geschwindigkeit in Pulsaren gefunden. Die Veröffentlichung der Ergebnisse erfolgt am 6. Mai in der Fachzeitschrift „Nature Astronomy“ (CAS-Pressemitteilung vom 7. Mai 2021, in englischer Sprache).
mehr
Ein neues Teleskop zur Erforschung von Einsteins Relativitätstheorie und Objekten höchster Dichte im Universum
Mit dem südafrikanischen MeerKAT-Teleskop führen Astronomen systematische Untersuchungen von Binärpulsaren für Tests der Gravitation durch

Eine internationale Gruppe von Astronomen unter der Leitung des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn und der University of British Columbia (UBC) in Vancouver hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
mehr
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Die Untersuchung der Zentralregionen von Kugelsternhaufen mit dem MeerKAT-Radioteleskop in Südafrika auf der Suche nach sehr schwachen Pulsarsignalen

Eine Gruppe von Astronomen unter der Leitung des italienischen Nationalen Instituts für Astrophysik (INAF) und des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden. Millisekundenpulsare sind Neutronensterne und damit die dichtesten bekannten Sterne, die sich bis zu 700 Mal pro Sekunde um ihre Achse drehen.
mehr
Auf der Jagd nach einem berühmten Radiostrahlungsausbruch
FRB20180916B lässt sich nur schwer eingrenzen

Zwei internationale Teams von Astronomen haben den Ursprung der im schnellen Radiostrahlungsausbruch FRB20180916B erzeugten Blitze eingegrenzt, indem sie diese einerseits mit der höchsten Zeitauflösung und andererseits bei den niedrigsten möglichen Frequenzen untersucht haben. Ihre Ergebnisse deuten darauf hin, dass die Ausbrüche in einem sehr kleinen Bereich nahe der Oberfläche eines Neutronensterns erzeugt werden, der möglicherweise einen massereichen Stern umkreist. Allerdings werfen diese Ereignisse auch neue Rätsel auf.
mehr
Eine Spiralgalaxie mit riesigem Magnetfeld
Neue kosmische Magnetfeldstrukturen in der Galaxie NGC 4217 entdeckt

Superblasen, Riesenschleifen und X-förmige Magnetfeldstrukturen – diese Galaxie hat einen wahren Formenreichtum zu bieten. Wie solche Strukturen zustande kommen, ist ein Rätsel. Hinweise liefert eine neue Studie im Rahmen des CHANG-ES Projekts („Continuum HAlos in Nearby Galaxies -- an EVLA Survey”). Für ein umfassendes Bild der Magnetfeldstrukturen kombinierten die Forscherinnen und Forscher unterschiedliche Methoden, mit denen sie die geordneten und die chaotischen Magnetfelder der Galaxie sowohl entlang der Sichtlinie als auch senkrecht dazu sichtbar machen konnten.
mehr
Einsteins glücklichster Gedanke: die bisher beste Bestätigung
Radioastronomen nützen die Umlaufbewegung dreier exotischer Sterne zur Überprüfung der Universalität des freien Falls

Ein internationales Forscherteam unter Beteiligung von Astronomen vom Bonner Max-Planck-Institut für Radioastronomie hat mit extrem hoher Präzision nachgewiesen, dass sich Neutronensterne und Weiße Zwerge in einem Schwerefeld mit gleicher Beschleunigung bewegen. Dies gelang ihnen, indem sie die Bewegung des Pulsars PSR J0337+1715 - eines Neutronensterns in einem ungewöhnlichen Dreifachsternsystem mit zwei Weißen Zwergen als Begleiter - äußerst präzise vermessen haben. Das Ergebnis, das durch eine neue stringente Untersuchungsmethode und die Verknüpfung von neuen Radioteleskopbeobachtungen mit den neuesten Ergebnissen von Gravitationswellendetektoren erhalten wurde, bedeutet die bisher beste Überprüfung einer der fundamentalsten Vorhersagen der allgemeinen Relativitätstheorie, dass nämlich die Schwerkraft alle Objekte mit der gleichen Beschleunigung anzieht, unabhängig von deren Zusammensetzung, Dichte oder Stärke des eigenen Gravitationsfeldes.
mehr
Kugelsternhaufen flattert im galaktischen Wind
Die Untersuchung von Pulsaren in 47 Tuc führt zu neuen Erkenntnissen über Magnetfelder im Halo der Milchstraße

Das Magnetfeld der Milchstraße spielt eine wichtige Rolle bei der Entwicklung unserer Galaxie, wobei man allerdings noch sehr wenig über seine Struktur auf kleinen Größenskalen weiß. Es ist bisher auch noch nicht bekannt, ob es sich in den Halo der Milchstraße fortsetzt oder nicht. Über die Beobachtung von Pulsaren im Kugelsternhaufen 47 Tuc im galaktischen Halo gelang es einem internationalen Forscherteam zum ersten Mal, das galaktische Magnetfeld auf der Skala von wenigen Lichtjahren zu untersuchen. Das Projekt wurde an der Universität von Mailand Bicocca und dem INAF-Observatorium in Cagliari begonnen. Die Wissenschaftler finden ein unerwartet starkes Magnetfeld in Richtung des Kugelsternhaufens. Die Ausrichtung des Magnetfelds ist senkrecht zur Ebene der Milchstraße und könnte durch eine Wechselwirkung mit einem galaktischen Wind erklärt werden. Das ist ein magnetisierter Ausfluss von der galaktischen Scheibe in den umgebenden Halo, dessen Existenz bisher nicht direkt nachgewiesen werden konnte.
mehr
Ein schnell rotierender Weißer Zwerg verwirbelt  die Raumzeit in einem kosmischen Tanz
Astronomen bestimmen mit Hilfe von Einsteins allgemeiner Relativitätstheorie die Rotation eines Weißen Zwergs in einem Doppelsternsystem

Nach Einsteins allgemeiner Relativitätstheorie führt die Rotation eines massereichen Objekts zu einer Verwirbelung der Raumzeit in seiner unmittelbaren Umgebung. Dieser Effekt konnte im Gravitationsfeld der Erde bereits durch Satellitenexperimente mit hoher Genauigkeit vermessen werden. Mit Hilfe eines Radiopulsars ist es nun einem internationalen Forscherteam unter wesentlicher Beteiligung von Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie gelungen, die entsprechende Verwirbelung der Raumzeit bei einem schnell rotierenden Weißen Zwerg zu vermessen und damit die Theorie zur Entstehung eines einzigartigen Doppelsternsystems zu bestätigen.
mehr
Ein sich wiederholender Radiostrahlungsausbruch aus einer Spiralgalaxie
Lokalisierung einer neuen Quelle wiederholt auftretender Radioblitze vertieft das Rätsel ihres Ursprungs

Das 100-m-Radioteleskop Effelsberg ist an einer Beobachtungskampagne zur Untersuchung eines sich wiederholenden schnellen Radiostrahlungsausbruchs (ein Beispiel für die mysteriösen „Fast Radio Bursts” oder FRBs) beteiligt, mit der es möglich wurde, den Ursprung des Ausbruchs in einer Spiralgalaxie ähnlich unserer Milchstraße genau zu bestimmen. Entscheidend für diese Arbeit waren sowohl die Empfindlichkeit des 100-m-Teleskops als auch sein flexibles Pulsar-Analyse-Instrument, mit dem eine schnelle Lokalisierung der Radioposition möglich wurde. Dieser FRB hat von allen bisher identifizierten den geringsten Abstand zur Erde und wurde in einer Umgebung aufgespürt, die sich deutlich von denen für vorhergehende FRBs gefundenen unterscheidet. Das aktuelle Resultat führt wiederum dazu, dass die Forscher ihre Annahmen über den Ursprung dieser rätselhaften extragalaktischen Ereignisse überprüfen müssen.
mehr
Gigantische magnetische Schleifen im Außenbereich eines fernen Sternsystems
Erstmalige Entdeckung eines gleichförmigen Magnetfelds mit Feldumkehrungen im Halo der Spiralgalaxie NGC 4631

Ein internationales Forscherteam unter Leitung von Wissenschaftlerinnen des Bonner Max-Planck-Instituts für Radioastronomie hat polarisierte Radiostrahlung der Galaxie NGC 4631 am US-amerikanischen VLA-Radioteleskop mit einem Breitbandempfänger in unterschiedlichen Spektralfenstern untersucht. Die Forscher konnten erstmals ein gleichförmiges Magnetfeld über Skalen von einigen Tausend Lichtjahren im äußeren Halobereich dieser Galaxie nachweisen. Darüber hinaus entdeckten sie Umkehrungen im großräumigen Magnetfeld dieser Galaxie in Form von gigantischen magnetischen Schleifen. Mit dieser Entdeckung wird die Bedeutung von großräumig wirkenden Dynamos zur Entstehung regulärer Magnetfelder in Spiralgalaxien unterstrichen. Die gleichförmigen Magnetfelder im Halobereich könnten auch eine Verbindung zu intergalaktischen Magnetfeldern darstellen und dabei helfen, das Rätsel ihres Ursprungs aufzuklären.
mehr
Pulsar-Tomographie dank Einstein
Relativitätstheorie ermöglicht genaue Untersuchung der Radiostrahlung über dem Magnetpol eines Neutronenstern

Pulsare in Doppelsternsystemen werden durch relativistische Effekte beeinflusst, die zur zeitlichen Änderung der Ausrichtung der Rotationsachsen führen. Einem Forscherteam unter der Leitung von Gregory Desvignes vom Bonner Max-Planck-Institut für Radioastronomie ist es gelungen, über langjährige Radiobeobachtungen des Pulsars PSR J1906+0746 die Struktur der polarisierten Strahlung aus Richtung des Magnetpols aufzulösen und das Verschwinden beobachtbarer Radiostrahlung für das Jahr 2028 vorherzusagen. Die Beobachtungsergebnisse für dieses System bestätigen erstmals die Gültigkeit eines 50 Jahre alten theoretischen Modells, das die Strahlung des Pulsars mit seiner geometrischen Ausrichtung verbindet. Den Forschern war es außerdem möglich, die Änderungsrate der Rotationsrichtung präzise zu bestimmen. Die Werte liegen in hervorragender Übereinstimmung mit den Vorhersagen aus Einsteins Allgemeiner Relativitätstheorie.
mehr
Ein Blick auf die Entstehung des Universums
Studie zu neuem Radioteleskop in Südafrika

Das „Square Kilometre Array” (SKA) soll das größte Radioteleskop auf der Erde werden. Wissenschaftler der Universität Bielefeld und des Max-Planck-Instituts für Radioastronomie in Bonn (MPIfR) haben mit internationalen Partnern das SKA-MPG Teleskop untersucht – einen Prototyp für den Teil des SKA, der Signale im mittleren Frequenzbereich empfängt. Die Studie, die in der Fachzeitschrift „Monthly Notices of the Royal Astronomical Society” erscheint, zeigt: Das gemeinsam vom MPIfR und der Firma MT-Mechatronics GmbH entwickelte Teleskop ist nicht nur ein Prototyp, um das Design für das SKA zu testen, sondern es kann auch als wissenschaftliches Instrument genutzt werden, mit dem bereits alleine Erkenntnisse über die Entstehung des Universums gewonnen werden können.
mehr
Warum Gewitterwolken mehrfach blitzen - Radioteleskop entdeckt „Nadeln” in Gewitterblitzen
17. April 2019

Mit dem Radioteleskop LOFAR hat ein internationales Forscherteam unter Beteiligung von Wissenschaftlern des MPIfR überraschende Strukturen von Gewitterblitzen in der Erdatmosphäre entdeckt. Diese „Nadeln” können Gewitterwolken wieder aufladen, so dass sie sich nach kurzer Zeit ein zweites Mal entladen.
mehr
Astronomen zeigen erstes Bild eines schwarzen Lochs
MPIfR und IRAM sind an den bahnbrechenden Beobachtungen der gewaltigen Schwerkraftfalle in der fernen Galaxie Messier 87 beteiligt

Das Event-Horizon-Teleskop (EHT) – ein im Rahmen einer internationalen Kollaboration zusammengeschaltetes Netzwerk von acht bodengebundenen Radioteleskopen, das fast die Größe der Erde erreicht – wurde eingerichtet, um die ersten Bilder von einem schwarzen Loch zu erzielen. Die Wissenschaftler des EHT-Projekts unter der Beteiligung von Forschern des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn und des Institut de Radioastronomie Millimétrique (IRAM) waren erfolgreich und zeigen heute im Rahmen mehrerer Pressekonferenzen an unterschiedlichen Standorten der Erde den ersten sichtbaren Nachweis eines schwarzen Lochs.
mehr
Hunderttausende von neuen Galaxien
Astronomen veröffentlichen neue Himmelskarte mit zahlreichen zuvor unbekannten Galaxien

Ein internationales Team von mehr als 200 Astronominnen und Astronomen aus 18 Ländern unter Beteiligung von Forschern am Bonner Max-Planck-Institut für Radioastronomie hat erste Karten einer Himmelsdurchmusterung von bisher unerreichter Empfindlichkeit mit dem Radioteleskop „Low Frequency Array” (LOFAR) veröffentlicht. Die Karte enthüllt Hunderttausende unbekannter Galaxien und wirft ein neues Licht auf Forschungsgebiete wie Schwarze Löcher, interstellare Magnetfelder und Galaxienhaufen.
mehr
Planeten und Asteroiden wiegen
Pulsarbeobachtungen ermöglichen die Bestimmung der Masse des Zwergplaneten Ceres und weiterer Objekte im Sonnensystem

Ein Forscherteam des „International Pulsar Timing Array”-Konsortiums unter der Leitung von Wissenschaftlern am Bonner Max-Planck-Institut für Radioastronomie hat über Zeitreihenmessungen von Pulsaren die Massen des Zwergplaneten Ceres und anderer Asteroiden im Sonnensystem bestimmt. Das Resultat für die Masse von Ceres liegt bei 1,3% der Masse des Erdmonds. Die Ergebnisse zeigen, welches Potential Messungen von Pulsaren dafür haben, bisher unbekannte massereiche Objekte in Umlaufbahnen um die Sonne aufzuspüren.
mehr
Ein neues Experiment zum Verständnis der Dunklen Materie
Müssen wir unsere Vorstellungen über die Wechselwirkung von Dunkler Materie mit gewöhnlicher Materie ändern?

Ist Dunkle Materie die Quelle für eine bis jetzt unbekannte Wechselwirkung zusätzlich zur Gravitation? Die geheimnisvolle Dunkle Materie ist zurzeit noch wenig verstanden und der Versuch, ihre Eigenschaften nachzuvollziehen, gehört zu den wichtigsten Herausforderungen der modernen Physik und Astrophysik. Forscher am Bonner Max-Planck-Institut für Radioastronomie haben ein neues Experiment vorgeschlagen, um mit Hilfe von Neutronensternen extrem hoher Dichte mehr über die Wechselwirkung von Dunkler Materie mit normaler Materie zu erfahren. Dieses Experiment ermöglicht jetzt bereits einen Fortschritt bei der Bestimmung von Eigenschaften der Dunklen Materie, der durch Beobachtungen im Zentralbereich unserer Milchstraße noch deutlich verbessert werden dürfte.
mehr
Können wir Schwarze Löcher voneinander unterscheiden?
Stand der Überprüfung von Schwerkrafttheorien durch Schatten von Schwarzen Löchern

Astrophysiker in Frankfurt, am Max-Planck-Institut für Radioastronomie in Bonn und in Nijmegen, die im Rahmen  des Projekts „BlackHoleCam” zusammenarbeiten, beantworten diese Frage durch die erstmalige Berechnung von Bildern Schwarzer Löcher aufgrund alternativer, nicht-Einsteinscher Gravitationstheorien. Zurzeit ist es noch schwierig, diese von klassischen Schwarzen Löchern aufgrund der allgemeinen Relativitätstheorie zu unterscheiden.
mehr
Einstein@Home entdeckt ersten nur im Gammalicht sichtbaren Millisekundenpulsar
Verteiltes Rechenprojekt findet zwei schnell rotierende Neutronensterne in Daten des Weltraumteleskops Fermi

Das verteilte Rechenprojekt Einstein@Home aggregiert von zehntausenden Freiwilligen aus aller Welt gespendete Rechenleistung. In einer Durchmusterung des Himmels im Gammastrahlenbereich hat dieses Computernetzwerk nun zwei zuvor unbekannte schnell rotierende Neutronensterne in Daten des Weltraumteleskops Fermi entdeckt. Während alle anderen solchen Millisekundenpulsare auch mit Radioteleskopen beobachtbar sind, ist eine der beiden Entdeckungen der erste Millisekundenpulsar, der sich nur anhand seiner pulsierenden Gammastrahlung nachweisen lässt. Diese Erkenntnisse erwecken die Hoffnung, weitere neue Millisekundenpulsare zu finden, beispielsweise aus einer vorhergesagten großen Population solcher Objekte nahe dem Galaktischen Zentrum.
mehr
Quelle wiederholter Radiostrahlungsausbrüche in extremer kosmischer Umgebung
Extragalaktische Quelle energetischer Radiostrahlungsausbrüche liegt in hochmagnetisierter astrophysikalischer Region

Die erstmalige Entdeckung von stark polarisierten Radioblitzen von FRB 121102, der bisher einzigen bekannten Quelle wiederholter Radiostrahlungsausbrüche, zeigt die Existenz eines starken Magnetfelds im direkten Umfeld der Quelle. Derart starke Magnetfelder sind in astrophysikalischen Umgebungen recht selten und lassen darauf schließen, dass die Quelle des Radiostrahlungsausbruchs entweder in der Nachbarschaft eines massereichen Schwarzen Lochs oder aber innerhalb eines kosmischen Nebels von hoher Energie zu finden ist.
mehr
Magnetfelder in einer Entfernung von fünf Milliarden Lichtjahren entdeckt
Astronomen erhalten Hinweise zur Lösung des Rätsels der Entstehung von kosmischen Magnetfeldern

Magnetfelder spielen eine wichtige Rolle bei der Erforschung der Physik des interstellaren Mediums in Galaxien. Es ist allerdings sehr schwierig, Magnetfelder im frühen Universum, was großen Entfernungen entspricht, nachzuweisen. Einem internationalen Forscherteam unter der Leitung von Sui Ann Mao vom Bonner Max-Planck-Institut für Radioastronomie ist es gelungen, das Magnetfeld in einer weit entfernten Galaxie zu vermessen. Die gemessene Rotverschiebung von 0,439 entspricht einer Distanz von 4,6 Milliarden Lichtjahren. Diese Galaxie wirkt als Gravitationslinse in dem Gravitationslinsensystem CLASS B1152+199 und ist die momentan am weitesten entfernte Galaxie, in der ein zusammenhängendes Magnetfeld beobachtet wurde. Die Messungen ermöglichen neue Einsichten in Ursprung und Entwicklung von Magnetfeldern im Universum.
mehr
Gigantische Magnetfelder im Universum
Radioteleskop Effelsberg beobachtet magnetische Strukturen mit Millionen von Lichtjahren Ausdehnung

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.
mehr
Sternenmusik aus fernen Galaxien
Was Radiostrahlung uns über die Sternentstehung in Spiralgalaxien verrät

Ein Forscherteam unter der Leitung von Fatemeh Tabatabaei vom Instituto de Astrofisica de Canarias (IAC) - mit Beteiligung von Astronomen von zwei Max-Planck-Instituten (MPIfR, Bonn und MPIA, Heidelberg) - hat die Radiostrahlung einer großen Anzahl von 52 Galaxien jeweils bei mehreren Wellenlängen mit dem 100-m-Radioteleskop Effelsberg gemessen. Diese Galaxien wurden aus der sogenannten KINGFISH-Stichprobe ausgewählt, die Infrarot-Beobachtungen von Galaxien mit dem Satellitenteleskop „Herschel” umfasst. Aus den Radiobeobachtungen konnte eine verlässliche Methode abgeleitet werden, die Sternentstehungsrate in Galaxien aus Radiobeobachtungen allein zu bestimmen, ohne Resultate aus anderen Spektralbereichen hinzuziehen zu müssen.
mehr
Ursprung eines schnellen Radiostrahlungsausbruchs identifiziert
Astronomen gelingt die Identifizierung von Radioblitzen: sie kommen aus einer Zwerggalaxie in großer Entfernung

Zum ersten Mal ist es Astronomen gelungen, die exakte Richtung eines Radioblitzes (Fast Radio Burst, FRB), eines sehr kurzen Radiostrahlungsausbruchs mit bisher nicht bekannter astronomischer Ursache, derart genau festzulegen, dass damit seine Herkunftsgalaxie identifiziert werden konnte. Diese Galaxie liegt in einer Entfernung von mehr als drei Milliarden Jahren. Es handelt sich um eine Zwerggalaxie, sehr unterschiedlich im Vergleich zu unserer Milchstraße. Außerdem wurde eine kompakte Radioquelle in unmittelbarer Nähe zum Ort des Radiostrahlungsausbruchs nachgewiesen, die Rückschlüsse auf den astrophysikalischen Ursprung des Phänomens ermöglicht.
mehr
Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
Internationales Forscherteam findet bisher massereichstes Doppelneutronensternsystem mit dem verteilten Rechenprojekt Einstein@Home in Beobachtungsdaten des Arecibo-Radioteleskops

Etwa 25000 Lichtjahre von der Erde entfernt kreisen zwei tote Sterne umeinander. Auf einem Durchmesser von lediglich 20 Kilometern vereint jeder von ihnen mehr Masse als unsere Sonne und sie benötigen nur fünf Stunden für eine Umkreisung. Dieses ungewöhnliche Paar sogenannter Neutronensterne wurde von einem internationalen Forscherteam unter Beteiligung von Wissenschaftlern vom Max-Planck-Institut für Gravitationsphysik und vom Max-Planck-Institut für Radioastronomie sowie von Teilnehmern am Computerprojekt „Einstein@Home“ aufgespürt. Ihre Entdeckung ist die bisher letzte auf einer sehr kurzen Liste von nur 14 bekannten Doppelneutronensternsystemen und dazu auch diejenige mit der größten Gesamtmasse für beide Komponenten. Diese Systeme aus zwei umeinander rotierenden Neutronensternen stellen wichtige kosmische Laboratorien dar, mit denen einige der genauesten Tests von Einsteins Allgemeiner Relativitätstheorie möglich werden. Sie spielen darüber hinaus eine große Rolle als potentielle Quellen für den Nachweis von Gravitationswellen mit den LIGO-Detektoren.
mehr
Ultrakurze Radioblitze von kosmischen Geschossen
Radioteleskop LOFAR misst Strahlung von zerfallenden Hochenergieteilchen aus dem Weltraum

Das Niederfrequenz-Radioteleskopnetzwerk LOFAR empfängt normalerweise Radiowellen aus dem entfernten Universum. Gelegentlich fängt es aber auch starke Radiopulse von extrem kurzer Dauer ein, irgendwo zwischen Kurzwelle und UKW. Im Autoradio sind solche Signale als kurzes Knacken hörbar. Normalerweise vielleicht überhört, sind sie der letzte Aufschrei von Elementarteilchen, die mit nahezu Lichtgeschwindigkeit auf die Erdatmosphäre auftreffen. Diese Teilchen wurden vor Millionen von Jahren bereits von einem kosmischen Beschleuniger abgefeuert. Einem internationalen Team von Astronomen unter Beteiligung von Forschern des „German Long Wavelength Consortium” (GLOW) ist es nun gelungen, die Radiobotschaft dieser kosmischen Eindringlinge zu entschlüsseln, und dadurch Erkenntnisse über ihre Herkunft und physikalische Natur zu gewinnen.
mehr
Rätselhafter kosmischer Strahlungsausbruch wiederholt sich in gleicher Quelle
Neue Beobachtungen geben Hinweise auf unterschiedliche Klassen von schnellen Radiostrahlungsausbrüchen
Ein internationales Forscherteam unter Beteiligung von Astronomen aus dem Bonner Max-Planck-Institut für Radioastronomie hat die erste Quelle von wiederholten Radiostrahlungsausbrüchen außerhalb der Milchstraße entdeckt. Diese Kurzzeit-Strahlungsausbrüche im Radiobereich dauern jeweils nur einige Millisekunden und ihr rätselhaftes Verhalten beschäftigt die Forscher bereits seit der Erstentdeckung vor fast zehn Jahren. Die aktuellen Resultate lassen darauf schließen, dass die beobachteten Ausbrüche von einem extrem leuchtkräftigen Objekt stammen, das gelegentlich auch Mehrfachausbrüche innerhalb eines Zeitraums von weniger als einer Minute produziert.
mehr
Das Universum auf die Waage stellen
Entdeckung eines schnellen Radiostrahlungsausbruchs zeigt fehlenden Anteil in der Materiebilanz des Universums
Ein internationales Forscherteam unter Mitwirkung von Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie hat mit der Kombination von Beobachtungen mit Radio- und mit optischen Teleskopen den genauen Ursprung eines schnellen Radiostrahlungsausbruchs in einer weit entfernten Galaxie bestimmt. Aus der Signalverzögerung auf dem zurückgelegten Weg ist es ihnen gelungen, Rückschlüsse auf die Materieverteilung im Universum zu ziehen.
mehr
Extragalaktischer Radioempfang
Astronomen erforschen die Außenbereiche von Galaxien in langwelliger Radiostrahlung

CHANG-ES („Continuum Halos in Nearby Galaxies, an EVLA Survey”) ist ein Forschungsprojekt, in dem Wissenschaftlerinnen und Wissenschaftler aus vielen Ländern der Erde gemeinsam Ursprung und Entwicklung von ausgedehnten Radiohüllen („Halos”) in Galaxien erforschen.  Sie untersuchen dabei den Übergang von den Galaxienscheiben zu den Halos, indem sie deren Radiostrahlung messen, die durch kosmische Strahlung in Magnetfeldern erzeugt wird. Damit gibt die Radiostrahlung wichtige Informationen über die Stärke und Struktur des Magnetfeldes preis. Das Ziel ist, die Verbindung und Wechselwirkung zwischen den ausgedehnten Halos und den Galaxienscheiben zu verstehen.
mehr
Verdrillte Magnetfeld-Schleife in der Giraffen-Galaxie IC 342
Magnetfelder geben Hinweise auf die Entwicklung von Galaxien

Magnetfelder existieren überall im Universum. Bisher war wenig darüber bekannt, ob Magnetfelder eine wichtige Rolle bei der Entwicklung von kosmischen Objekten spielen. Dabei stellen Radiowellen ein ideales Mittel zur Messung von Magnetfeldern dar. In einer langfristigen Beobachtungskampagne ist es Rainer Beck vom Bonner Max-Planck-Institut für Radioastronomie (MPIfR) gelungen, einen umfangreichen Datensatz für die nahegelegene Galaxie IC 342 aus Beobachtungen mit zwei der größten Radioteleskope der Erde zu erhalten, dem amerikanischen 'Very Large Array' (VLA) und dem 100-m-Radioteleskop in Effelsberg. Die Daten in vier unterschiedlichen Wellenlängenbereichen zwischen 2,8 und 21 cm haben es ermöglicht, ein geordnetes Magnetfeld in dieser Galaxie zu entdecken, das überwiegend entlang der optischen Spiralarme dieser Galaxie ausgerichtet ist. Die Entdeckung hilft zu erklären, wie die Spiralarme gebildet wurden und wie Gas nach innen in Richtung des Zentrums von IC 342 geleitet werden kann.
mehr
Elektronenwirbel in der Strudelgalaxie
Beobachtung von kosmischen Teilchen und Magnetfeldern in der Galaxie M51 mit dem LOFAR-Radioteleskop

Die Galaxie Messier 51 (M51) in ca. 30 Millionen Lichtjahren Entfernung wird wegen ihres Aussehens auch als Strudelgalaxie bezeichnet. Man sieht die Galaxie fast genau von oben und sie zeigt ein sehr schön ausgeprägtes System von Spiralarmen.
Ein europäisches Team von Astronomen hat dieses Sternsystem mit dem internationalen LOFAR-Teleskop in einem Frequenzbereich von 115 bis 175 MHz beobachtet; das ist unmittelbar oberhalb des kommerziellen UKW-Bereichs von 88 bis 108 MHz. Das Team hat damit das bisher empfindlichste Bild überhaupt von einer Galaxie bei Frequenzen unterhalb von 1 GHz erstellt. Mit der hohen Empfindlichkeit des LOFAR-Teleskops konnte die Scheibe der Galaxie M51 wesentlich weiter bis in die Außenbereiche abgebildet werden als jemals zuvor. Den Astronomen ist es gelungen, schnelle kosmische Elektronen und Magnetfelder bis in eine Entfernung von 40.000 Lichtjahren vom Zentrum von M51 hinaus nachzuweisen.
mehr
Entdeckung eines Radiostrahlungsausbruchs vertieft astrophysikalisches Rätsel
Neu entdeckter Kurzzeit-Radiopuls von weit außerhalb der Milchstraße

Die Entdeckung eines nur Sekundenbruchteile dauernden Radiostrahlungsausbruchs mit dem Arecibo-Radioteleskop auf Puerto Rico liefert wichtige neue Daten zu den rätselhaften Ausbrüchen, die aus großen Entfernungen im Universum zu kommen scheinen. Die Forschungsergebnisse eines internationalen Teams von Astronomen unter der Leitung von Laura Spitler vom Bonner Max-Planck-Institut für Radioastronomie werden in der Online-Ausgabe der Fachzeitschrift "Astrophysical Journal" vom 10. Juli 2014 veröffentlicht. Zum allerersten Mal wurde ein solcher Radiostrahlungsausbruch ("Radioblitz") in der nördlichen Hemisphäre des Himmels beobachtet.
mehr
Trio von Schwarzen Löchern verändert Raum-Zeit
Eng zusammenstehendes System von supermassereichen Objekten in weit entfernter Galaxie

Astronomen haben ein System von gleich drei einander umkreisenden supermassereichen Schwarzen Löchern in einer Galaxie in mehr als vier Milliarden Lichtjahren Entfernung entdeckt. Es handelt sich dabei um das bisher kleinste gefundene Trio von Schwarzen Löchern und es ist allein schon dadurch bemerkenswert, dass die meisten Galaxien nur ein supermassereiches Objekt im Zentralbereich aufweisen. Üblicherweise liegen deren Massen zwischen einer Million und 10 Milliarden mal der Masse unserer Sonne. Die Entdeckung legt den Schluss nahe, dass derart dicht gepackte Systeme von schwarzen Löchern weitaus häufiger vorkommen als bisher angenommen. Ein internationales Forscherteam, zu dem auch Hans-Rainer Klöckner vom Bonner Max-Planck-Institut für Radioastronomie gehört, hat VLBI- ("Very Long Baseline Interferometry") Beobachtungen mit Radioteleskopen bei einer Anzahl unterschiedlicher Radiofrequenzen durchgeführt, um die beiden eng benachbarten Schwarzen Löcher in diesem Tripelsystem im Detail zu untersuchen. In der VLBI-Beobachtungstechnik werden die Signale einer Anzahl von großen Radioteleskopen über Entfernungen von bis zu 10.000 Kilometern miteinander verknüpft. Dadurch können Details bis zu 50mal feiner aufgelöst werden als mit dem Hubble-Weltraumteleskop in optischen Wellenlängen. Bei diesen Beobachtungen war das 100-m-Radioteleskop in Effelsberg im Rahmen des Europäischen VLBI-Netzwerks (EVN) beteiligt.
mehr
Ein exotisches Sterntrio mit Millisekundenpulsar
Stellare Astrophysiker berechnen die Entwicklung eines neu entdeckten Sternsystems, in dem ein Neutronenstern von gleich zwei Weißen Zwergen umkreist wird
Millisekundenpulsare sind alte Neutronensterne, die sich mehrere hundert Mal pro Sekunde um die eigene Achse drehen. Ihre Entstehung lässt sich aufgrund theoretischer Untersuchungen durch Massenübertrag in Doppelsternsystemen erklären. Die jetzt gelungene erstmalige Entdeckung eines Millisekundenpulsars in einem Dreifachsternsystem ist eine ziemliche Überraschung und stellt die gängigen Modelle in Frage. Der Astrophysiker Thomas Tauris, der am Max-Planck-Institut für Radioastronomie und am Argelander-Institut für Astronomie der Universität Bonn arbeitet, hat zusammen mit Ed van den Heuvel von der Universität Amsterdam ein semianalytisches Modell entwickelt, mit dem die rätselhafte Entstehung eines derart exotischen Systems erklärt werden kann. Mit theoretischen Berechnungen und einer Stabilitätsanalyse auf der Grundlage von Sternentwicklungsrechnungen haben sie ein Modell erstellt, mit dem neue Erkenntnisse über die Wechselwirkungen von Sternen in Mehrfachsternsystemen gewonnen werden. Mit dieser Untersuchung kann auch die wachsende Zahl der gefundenen Millisekundenpulsare durch ihre Entstehung in Dreifachsystemen erklärt werden. mehr
Die vielfältigen Wege zu Millisekunden-Pulsaren
Neugefundene Pulsarsysteme lassen darauf schließen, dass die Natur kreativer vorgeht als bisher angenommen

Zwei Bonner Astronomen haben ein neues Szenario vorgeschlagen für die Entwicklung einer neugefundenen Art von Millisekunden-Pulsaren in Doppelsternsystemen mit ähnlichen Umlaufperioden und Exzentrizitäten. Nach der Hypothese von Paulo Freire und Thomas Tauris werden Materie und Drehmoment von einem Begleitstern durch Akkretion auf einen massereichen Weißen Zwergstern übertragen, der dadurch auf eine Gesamtmasse jenseits der für die Sternentwicklung kritischen Chandrasekhar-Grenzmasse anwächst. Allerdings wird dieser Stern dann nicht unmittelbar zu einem Neutronenstern kollabieren, da er sehr schnell rotiert und die resultierenden Zentrifugalkräfte ihn zunächst stabil halten. Erst nach Beendigung der Massenübertragung verliert der Stern allmählich seine Rotationsenergie und wird schließlich direkt zu einem Millisekunden-Pulsar, also einem extrem schnell rotierenden Neutronenstern, der nicht erst durch zusätzliche Akkretion "nachbeschleunigt" werden muss. Die damit verbundene Freisetzung von gravitativer Bindungsenergie führt zu den exzentrischen Bahnen, die in solchen Systemen beobachtet werden. Die neue Hypothese beinhaltet eine Reihe von Vorhersagen über diese erst kürzlich entdeckte Untergruppe von Millisekunden-Pulsaren, die durch Beobachtungen getestet werden können. Wenn sie sich damit bestätigt, ermöglicht das neue Wege bei der Erforschung der Physik von Sternen, speziell Impulsübertragung und Massenverlust bei einem durch Akkretion verursachten Kollaps von sehr massereichen Weißen Zwergsternen.
mehr
Zwei Galaxien auf einen Streich
Überraschende Entdeckung liefert neues Werkzeug zur Untersuchung der Magnetfelder von Galaxien

Ein internationales Forscherteam unter Beteiligung von Marita Krause und Rainer Beck vom Bonner Max-Planck-Institut für Radioastronomie (MPIfR) hat eine neue Methode zur Untersuchung der Magnetfelder von Galaxien im Universum angewandt. Beim Studium von ausgedehnten Gashüllen (sogenannten Halos) im Umfeld von nahegelegenen Galaxien fanden sie über detaillierte Messungen der Radiostrahlung mit dem „Karl G. Jansky Very Large Array“ (VLA) heraus, dass eines der Objekte nicht aus einer Galaxie allein besteht. Es sind vielmehr zwei Galaxien in sehr unterschiedlicher Entfernung, die zufällig hintereinander stehen und bisher nicht voneinander unterschieden werden konnten. Eine solche Konstellation zeigt Details von der näheren Galaxie, die ansonsten nicht erfasst werden könnten.
mehr
Gammapulsare aus dem Heimcomputer
Mit Einstein@Home fischen Freiwillige aus den Daten des NASA-Satelliten Fermi vier kosmische Leuchttürme heraus.


Das Zusammenspiel von weltweit verteilter Rechenkraft und innovativer Analysemethoden erweist sich als Erfolgsmodell für die Suche nach neuen Pulsaren. Forscher der Max-Planck-Institute für Gravitationsphysik und Radioastronomie haben nun vier Gammapulsare in internationaler Zusammenarbeit in Daten des Weltraumteleskops Fermi entdeckt – und zwar mit dem Projekt Einstein@Home, das mehr als 200.000 Computer von rund 40.000 Teilnehmern aus aller Welt zu einem globalen Superrechner verbindet. An der Entdeckung waren Freiwillige aus Australien, Deutschland, Frankreich, Japan, Kanada und den USA beteiligt.
mehr
Neutronensterne in der Rechnerwolke
Einstein@Home findet in Archivdaten 24 bisher unbekannte Pulsare
 
Die geballte Rechenkraft von 200 000 Privatrechnern hilft Astronomen bei der Inventur der Milchstraße. Das Projekt Einstein@Home verbindet die Computer von Freiwilligen aus aller Welt zu einem globalen Supercomputer. Mit der Hilfe der Rechnerwolke durchsuchte ein internationales Team um Forscher der Max-Planck-Institute für Gravitationsphysik und für Radioastronomie Archivdaten des Parkes-Radioteleskops in Australien. Dabei entdeckte das weltumspannende Rechnernetzwerk mit neuartigen Analysemethoden 24 Pulsare - außergewöhnliche Sternreste mit extremen physikalischen Eigenschaften. Sie können als Prüfstand für Einsteins Relativitätstheorie dienen und unser Bild von der Gesamtpopulation dieser Himmelskörper vervollständigen.
mehr
Ein Magnetar im Herzen der Milchstraße
Radioastronomen nutzen Pulsar mit starkem Magnetfeld zum Studium des superschweren schwarzen Lochs

Im Zentrum unserer Milchstraße haben Astronomen einen Magnetar aufgespürt. Dieser Pulsar besitzt ein extrem starkes Magnetfeld und ermöglicht es, die direkte Umgebung des schwarzen Lochs im Herzen der Galaxis zu studieren. Forscher unter Leitung des Bonner Max-Planck-Instituts für Radioastronomie haben zum ersten Mal die magnetische Feldstärke um die Zentralquelle bestimmt und nachgewiesen, dass sie mit Magnetfeldern gefüttert wird. Diese regulieren zudem den Masseneinstrom in das schwarze Loch und erklären die beobachtete Strahlung dieser Schwerkraftfalle. mehr
Rätselhafte Blitze am Himmel
Kosmische Radioausbrüche weisen auf explosive Ereignisse im fernen Universum

Ein Team unter Beteiligung von Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie hat Ausbrüche von Radiowellen entdeckt, deren Ursprung offenbar in einer Entfernung von Milliarden Lichtjahren liegt – in einer Zeit, da das Universum erst zwischen sechs und neun Milliarden Jahre alt war. Über die Ursache der Strahlungsausbrüche rätseln die Forscher noch. Auf jeden Fall wollen sie die Radioblitze in Zukunft zur Untersuchung des intergalaktischen Raums nutzen.
mehr
Ein Schwergewicht für Einstein
Beobachtungen am massereichsten Neutronenstern bestätigen Vorhersagen der Allgemeinen Relativitätstheorie

Ein Team unter der Leitung von Wissenschaftlern aus dem Bonner Max-Planck-Institut für Radioastronomie hat mit mehreren großen Radioantennen und optischen Teleskopen einen Pulsar und seinen Begleiter, einen Weißen Zwerg, detailliert untersucht. Die Beobachtungen zeigen ein Doppelsternsystem mit ungewöhnlichen Eigenschaften: Der Pulsar wiegt doppelt so viel wie die Sonne und ist damit der massereichste bisher bekannte Neutronenstern. In Verbindung mit der sehr kurzen Umlaufperiode von nur 2,5 Stunden ergeben sich unter anderem neue Erkenntnisse über die Aussendung von Gravitationswellen. So bildet das System einen Modellfall für die Untersuchung der Allgemeinen Relativitätstheorie unter extremen Bedingungen.
mehr
Ein janusköpfiger Neutronenstern
Pulsar-Chamäleon mit sprunghaft wechselndem Verhalten verblüfft Astronomen

Einem internationalen Forschungsteam geleitet von niederländischen Astronomen ist unter Mitarbeit einer ganzen Reihe von Wissenschaftlern des Max-Planck-Instituts für Radioastronomie (MPIfR) in Bonn eine aufregende Entdeckung gelungen, bei der es um den Mechanismus geht, mit dem Pulsare ihre Strahlung aussenden. Die Abstrahlung von Röntgen- und Radiowellen bei diesen schnell rotierenden Neutronensternen kann sich nämlich dramatisch ändern, in Sekundenbruchteilen simultan bei beiden Frequenzen und in einer Weise, die mit gängigen Theorien bis jetzt noch nicht erklärt werden kann. Die Beobachtungen lassen auf schnelle Variationen der gesamten Magnetosphäre des Pulsars schließen.
mehr
Supermassereiches Schwarzes Loch erzeugt riesige Blase
Beobachtungen der Radiogalaxie Messier 87 mit dem europäischen Niederfrequenz-Teleskop LOFAR

Mit dem neuen Radioteleskop LOFAR hat ein internationales Team von Astronomen unter Leitung des Max-Planck-Instituts für Astrophysik eines der bisher besten Bilder von riesigen Blasen aufgenommen, die durch ein supermassereiches Schwarzes Loch erzeugt wurden. Das Bild, aufgenommen in einem Frequenzbereich, der in der Regel Flugzeugpiloten vorbehalten ist, zeigt einen Bereich, der wie ein gigantischer, mit Plasma und Magnetfeldern gefüllter Ballon aussieht. Diese Blase, die viel größer ist als eine ganze Galaxie, wurde langsam durch eines der massereichsten Schwarzen Löcher in unserer kosmischen Nachbarschaft aufgeblasen. Dieses befindet sich im Zentrum von M87.
mehr
Schwarze Witwe bittet zum Tanz im Gammalicht!
Mit einer neuen Analysemethode entdecken Max-Planck-Forscher einen Millisekundenpulsar, der alle Rekorde bricht
 
Pulsare sind die kompakten Überreste von Explosionen massereicher Sterne. Manche von ihnen drehen sich mehrere hundert Mal innerhalb einer Sekunde um die eigene Achse und schicken dabei Strahlungsbündel ins All. Diese Millisekundenpulsare ließen sich bisher nur durch ihre Radiowellen aufspüren. Nun haben Forscher des Max-Planck-Instituts für Gravitationsphysik (Albert-Einstein-Institut, AEI) in Hannover mit Unterstützung des Max-Planck-Instituts für Radioastronomie erstmals einen Millisekundenpulsar allein anhand seiner gepulsten Gammastrahlung entdeckt. Entscheidend für den Erfolg war eine neue, am AEI entwickelte Analysemethode. Der Pulsar besitzt einen Begleitstern, den er in engem Kreistanz vernichtet – Astronomen bezeichnen ihn daher als Schwarze Witwe.
mehr
Ein sprunghafter Pulsar

Ein sprunghafter Pulsar

24. Juli 2012
Max-Planck-Wissenschaftler entdecken jungen und hochenergetischen Neutronenstern mit außergewöhnlich unruhiger Rotation
 
Pulsare sind kosmische Leuchttürme der Superlative. Die kompakten Neutronensterne drehen sich mehrmals pro Sekunde um die eigene Achse und senden dabei Radio- und Gammastrahlung ins All. Mithilfe raffinierter Datenanalyse haben Forscher des Max-Planck-Instituts für Gravitationsphysik (Albert-Einstein-Institut/AEI, Hannover) und des Max-Planck-Instituts für Radioastronomie in internationaler Kooperation nun einen ganz besonderen Gammapulsar aus den Daten des NASA-Weltraumobservatoriums Fermi gefischt: Das Objekt mit der Bezeichnung PSR J1838-0537 ist nicht im Radiobereich sichtbar, sehr jung und erfuhr während der Beobachtungszeit den bisher stärksten bei reinen Gammapulsaren beobachteten Ruck in seiner Drehbewegung.
mehr
Die Entdeckung der Verlangsamung
Pulsare können durch Materie, die von außen auf sie einströmt, nicht nur beschleunigt, sondern auch verlangsamt werden. Das erklärt einige Rätsel.

Pulsare gehören zu den exotischsten, bekannten Himmelskörpern. Sie besitzen Durchmesser von etwa 20 Kilometern, beinhalten aber in etwa die Masse unserer Sonne. Ein würfelzuckergroßes Stück ihrer ultrakompakten Materie würde auf der Erde mehrere hundert Millionen Tonnen wiegen. Eine Unterklasse von ihnen, die Millisekundenpulsare, wirbeln zudem bis zu einige hundert Mal pro Sekunde um die eigene Achse. Frühere Untersuchungen hatten bei einigen Millisekundenpulsaren zu der paradoxen Schlussfolgerung geführt, dass sie älter als das Universum sind. Der Astrophysiker Thomas Tauris vom Max-Planck-Institut für Radioastronomie und dem Argelander-Institut für Astronomie in Bonn konnte dieses Paradoxon mit Computersimulationen lösen.
mehr
Millisekundenpulsar im Schleudergang
Die Gammastrahlung eines schnell rotierenden Neutronensterns rüttelt an den Modellen zum Ursprung solcher Objekte

Astronomen haben den ersten Gammapulsar in einem Kugelsternhaufen aufgespürt. Mit einer Distanz von etwa 27000 Lichtjahren hält er außerdem noch den Entfernungsrekord in dieser Objektklasse. Seine hohe Leuchtkraft deutet zudem darauf hin, dass J1823-3021A der jüngste bisher gefundene Millisekundenpulsar ist und sein Magnetfeld um einiges stärker als theoretisch vorhergesagt. So lässt er auf eine neue Population solch extremer Objekte schließen. Die Entdeckung gelang einem internationalen Team um Paulo Freire vom Bonner Max-Planck-Institut für Radioastronomie. Die Forscher hatten Daten des Weltraumteleskops Fermi ausgewertet.
mehr
Neun neue Gammapulsare

Neun neue Gammapulsare

3. November 2011
Entdeckung in den Daten des Fermi-Teleskops gelingt dank Analysemethode aus der Gravitationswellenforschung

Pulsare gelten als Leuchttürme im All. Diese kompakten und schnell rotierenden Neutronensterne blinken im Radio- oder Gammawellenbereich mehrmals pro Sekunde auf. Reine Gammapulsare sind extrem schwer zu finden, da sie trotz der hohen Energie nur sehr wenige Photonen pro Zeiteinheit abstrahlen. Mit einem verbesserten Analysealgorithmus haben nun Max-Planck-Wissenschaftler in internationaler Kooperation eine Reihe bisher unbekannter und besonders leuchtschwacher Gammapulsare in den Daten des Satellitenobservatoriums Fermi aufgespürt. Damit hat sich deren Anzahl auf mehr als 100 erhöht.
mehr
Der Diamantplanet

Der Diamantplanet

25. August 2011
Radiobeobachtungen zeigen die Umwandlung eines Sternsystems in einen Millisekundenpulsar und seinen planetaren Begleiter

Ein Stern, der sich in einen Planeten aus Diamant verwandelt? Was wie Science-Fiction klingt, scheint Realität zu sein. Die Entdeckung gelang einem internationalen Team mit Wissenschaftlern aus Australien, Italien, Großbritannien, den USA und Deutschland, darunter Michael Kramer vom Bonner Max-Planck-Institut für Radioastronomie. Die Forscher fanden den Diamantplaneten mit dem australischen 64-Meter-Parkes-Radioteleskop. Offenbar  kreist er um einen ungewöhnlichen Stern mit extrem hoher Dichte, einen Pulsar.
mehr
Ein Atlas der Milchstraße

Ein Atlas der Milchstraße

23. August 2011
Deutsch-chinesische Forschergruppe erstellt am Urumqi-Radioteleskop eine neue Karte und entdeckt zwei Supernova-Überreste

Anhalter durch die Galaxis werden ihn vielleicht nicht nutzen, für Astronomen dagegen ist er überaus wertvoll: der neue Radioatlas der Milchstraße. Nach fast zehnjähriger Arbeit haben Forscher der Max-Planck-Gesellschaft und der chinesischen Akademie der Wissenschaften die Untersuchung der polarisierten Radiostrahlung in der galaktischen Ebene abgeschlossen. Der Atlas beruht auf Beobachtungen mit dem 25-Meter-Radioteleskop der chinesischen Stadt Urumqi und zeigt am Himmel eine Fläche von 2200 Quadratgrad.
mehr
Eine Waage für unsere kosmischen Nachbarn
Zeitreihenmessungen von Pulsaren eröffnen einen neuen Weg, um Planetenmassen im Sonnensystem zu bestimmen

Eine Waage muss nicht unbedingt die Schwerkraft messen. Ein internationales Team um Forscher des Bonner Max-Planck-Instituts für Radioastronomie nutzt vielmehr Radiosignale von vier Pulsaren, um Planeten unseres Sonnensystems zu wiegen, und zwar erstmals inklusive ihrer Monde und Ringsysteme. Die Forscher bestimmen die Planetenmassen dabei auf 0,03 Promille der Erdmasse oder ein Zehnmillionstel der Masse von Jupiter genau. Das entspricht zwar immer noch einem Fehler von 200 Billiarden Tonnen, dennoch lassen sich mit dem Verfahren schon jetzt die derzeit gebräuchlichen Massewerte der Planeten überprüfen.
mehr
Pulsar von Amateuren entdeckt
Deutsche und US-amerikanische Amateurwissenschaftler entdecken mit Einstein@Home einen neuen Pulsar in Daten vom 305-m-Arecibo-Radioteleskop

Astronomische Entdeckungen sind längst nicht mehr ausschließlich auf den Himmel beschränkt - unter Umständen sind sie sogar zuhause am eigenen Computer möglich. Diese Erfahrung haben Daniel Gebhardt von der Universität Mainz und das Ehepaar Chris und Helen Colvin aus Ames, Iowa in den Vereinigten Staaten gemacht. Ihre Computer nehmen zusammen mit 500000 weiteren Rechnern an dem Programm "Einstein@Home" teil, mit dem außer der Suche nach Gravitationswellen auch radioastronomische Beobachtungen nach Signalen von Pulsaren durchsucht werden. Ihren Computern ist nun die erste Entdeckung eines neuen Pulsars aus diesen Daten zu verdanken. 
mehr
Pulsare als Atomuhren

Pulsare als Atomuhren

24. Juni 2010
Die Korrektur von Rotationsinstabilitäten macht Neutronensterne zu den besten Zeitmessern im Universum

Ein internationales Team von Astronomen hat das Verhalten von kosmischen Uhren untersucht und dabei ein Verfahren entdeckt, das sie zu den mit Abstand genauesten Zeitmessern im Universum macht. Die Wissenschaftler, darunter Michael Kramer vom Max-Planck-Institut für Radioastronomie in Bonn, werteten dazu die Signale von Pulsaren aus. Diese beobachten Forscher bereits mehrere Jahrzehnte mit dem 76-Meter-Radioteleskop am englischen Observatorium Jodrell-Bank.
mehr
Schwarze Witwe im Weltall

Schwarze Witwe im Weltall

19. Februar 2010
Neues Projekt beschert Radioastronomen die Entdeckung eines Millisekunden-Pulsars

Einen schnellen Erfolg feiert das erst 2009 gegründete Team "Radioastronomische Fundamentalphysik" am Bonner Max-Planck-Institut für Radioastronomie. Nur wenige Wochen nach dem Start eines Pulsar-Suchprogramms am 100-Meter-Teleskop in Effelsberg konnten die Forscher jetzt ihren ersten Millisekunden-Pulsar nachweisen. Das Objekt trägt die vorläufige Bezeichnung PSR J1745+10, wurde auf der Position einer mit dem Weltraumobservatorium Fermi entdeckten Gammastrahlungs-Punktquelle gefunden und scheint gerade dabei zu sein, seinen Begleitstern zu verdampfen.
mehr
Zur Redakteursansicht