Research Highlights

Here we show recent research results from the Radio Astronomy/Very-Long-Baseline Interferometry department.

ERC advanced grant for Prof. Dr. Yuri Kovalev
Classical telescopes and neutrino telescopes will allow scientists to understand extreme cosmic super-colliders more

Understanding AGN jets with the TELAMON programme

28 March 2024

A paper published today shows the results obtained by a team led by Florian Eppel, including scientists from the MPIfR and the University of Würzburg, reporting on the first results from the TELAMON program (PI. M. Kadler).  The TELAMON programme uses the 100 m Effelsberg telescope to monitor radio spectra of active galactic nuclei (AGN), in particular TeV blazars and neutrino-associated AGN. This study focuses on the characterisation of a main sample of TeV-detected blazars. Data from about 2.5 years of observations were analysed, covering frequencies from 14 GHz to 45 GHz. In the pilot phase, 59 TeV-detected blazars in the northern hemisphere were observed. Basic data reduction and calibration procedures were applied to the TELAMON data, and an averaging method was used to compute mean light curves for the sources. The results show that TeV-selected blazars in the sample typically have a flat radio spectrum, with a median spectral index of -0.11. These results are consistent with previous studies of TeV-selected blazars. Compared to the GeV-selected sample, the TELAMON sources have a lower radio flux density, which is consistent with the spectral characteristics of TeV-emitting blazars. The spectral index distribution of the TeV-selected blazar sample is similar to that of the GeV-selected samples. In addition, a strategy for tracking the light curve evolution is presented for future variability and correlation analysis.  More details can be found in the publication, appeared today in Astronomy & Astrophysics, here.

Sagittarius A*

Sagittarius A*

March 27, 2024
Astronomers Unveil Strong Magnetic Fields Spiraling at the Edge of Milky Way’s Central Black Hole more

Selected media echo and parallel press releases (Sgr A* 2017 EHT polarisation image release)

Parallel Press Releases:



German press echo here (VLBI Department Highlights German version)

Magnetic launching of black hole jets in Perseus A
First observations of the radio galaxy Perseus A with the Event Horizon Telescope more

Selected media echo and parallel press releases (Perseus A 2017 EHT image release)



New EHT observations of M87 reveal persistent black hole shadow
Improved observations one year after the discovery image give a better picture more

Selected media echo and parallel press releases (M87 2018 EHT image release)

Here selected parallel press releases and news & views on the A&A publication of the Messier 87* images by the Event Horizon Telescope from observations in 2018.




Unraveling Blazar Mysteries: TANAMI's First-epoch S Band Images

16 January 2024

A team of astronomers led by the MPIfR PhD candidate Petra Benke presents a new publication on southern radio sources. The study focuses on the multi-wavelength emission from blazars, which are celestial objects that emit radiation across the electromagnetic spectrum, from radio to high-energy gamma rays. Recent successes in the study of blazar activity have come from quasi-simultaneous multi-wavelength monitoring programs made possible by the launch of the Fermi Gamma-ray Space Telescope in 2008. The team used VLBI to carry out sensitive, long-term monitoring of a comprehensive sample of gamma-energetic AGN. These observations were made with the Long Baseline Array (LBA) and other radio telescopes in the Southern Hemisphere at 13 cm wavelength (S-band) as part of the TANAMI program. The study presents the first light TANAMI S-band images, highlighting the TeV-detected sub-sample of the full TANAMI sample. The analysis examines the redshift, 0.1-100 GeV photon flux, and S-band core brightness temperature distributions of the TeV-detected objects. In particular, flat-spectrum radio quasars and low-synchrotron-peak sources have on average higher brightness temperatures than high-synchrotron-peak BL Lacs. In addition, sources with bright GeV gamma-ray emission show higher brightness temperatures compared to gamma-low sources. More details of the study can be found in the original paper here (preprint here).

Go to Editor View