Building complex molecules during star- and planet formation:

Synergy of infrared and millimeter observations Examples from low-mass star formation

Ewine F. van Dishoeck Leiden Observatory

May 20, 2004

Exploring the cosmic frontier, Berlin

Detection of exo-planets:

Renewed interest in lifecycle of gas and dust

- Inventory of gas + solid at different evolutionary stages?
- How far does chemical complexity go?
- Chemical diagnostics of protostellar evolution?

Need high spectral and spatial resolution observations at IR and mm => ALMA, Herschel, JWST, ELT

Virtually all current data spatially unresolved

Infrared vs submillimeter

• Submillimeter:

- Very high spectral resolution (R>10⁶, <0.1 km/s)
- Many gas-phase molecules with abundances down to 10^{-11} w.r.t. $\rm H_2$
- Emission => map of region
- Infrared:
 - Moderate spectral resolution (R~10³-10⁴)
 - Gases and solids with abundances down to 10^{-7} - 10^{-8} w.r.t. H₂
 - Molecules without permanent dipole moments (H₂, C₂H₂, CH₄, CO₂, CH₃, ...)
 - Absorption => pencil beam line-of-sight

Rich (sub)millimeter spectroscopy

Massive protostar

Gibb et al. 2001

Some complex organic molecules

Infrared vs submillimeter

• Submillimeter:

- Very high spectral resolution (R>10⁶, <0.1 km/s)
- Many gas-phase molecules with abundances down to $10^{\text{-}11}$ w.r.t. H_{2}
- Emission => map of region
- Infrared:
 - Moderate spectral resolution (R~10³-10⁴)
 - Gases and solids with abundances down to 10⁻⁷-10⁻⁸ w.r.t. H₂
 - Molecules without permanent dipole moments (H₂, C₂H₂, CH₄, CO₂, CH₃, ...)
 - Absorption => pencil beam line-of-sight

Rich variety in infrared spectroscopy

Examples from ISO

PAHs everywhere

Stellar Nursery Sharpless 140 NASA / JPL-Caltech / G. Melnick (Harvard-Smithsonian CfA) Spitzer Space Telescope • IRAC ssc2004-07a

Melnick et al. 2004

Chemical Scenario

- Heavy freeze-out of molecules onto grains in cold pre-stellar phase
- Grain surface reactions produce new species:

 $0.1 \mu m$

W33A vs HH 46 ices: massive vs low-mass YSO

Note similarity in features!

W33A ($10^4 L_{sun}$): Gibb et al. 2000 HH46 ($10 L_{sun}$): Noriega-Crespo et al. 2004, Boogert et al. 2004

First ice map on 1000 AU scales VLT-ISAAC

2Mass

Pontoppidan et al. 2004

resolution comparable to mm maps

Ice evaporation low-mass YSO's

Previous generation:high-mass YSO'sSpitzer/8-m ground:solar mass YSO's, low to medium resolutionJWST/ELT:subsolar mass, more deeply embedded, high (10⁵) spectral res

Pontoppidan et al 2003

Evaporated ices also seen at mm wavelengths:

Complex organics around the solar-mass star IRAS 16293-2422

vD et al. 1995, Ceccarelli et al. 2000

IRAM 30m

Cazaux et al. 2003

Physical structure protostellar envelope

Gas-phase H₂O map of low-mass star-forming region

Herschel-HIFI can survey H_2O at factor 10 better spatial resolution and sensitivity

Bergin et al. 2003

Chemical Scenario

- Heavy freeze-out of molecules onto grains in cold pre-stellar phase
- Grain surface reactions produce new species
- Protostar heats surroundings
- Fraction of ices and gas ends up in disks; remainder is dispersed

Disks are small (few arcsec) and contain much less mass than envelope => need next generation telescopes!

Detection of DCO+ in a circumstellar disk

- DCO⁺/HCO⁺=0.035 => gas in disks is cold with heavy depletions

- Ionization degree sufficient for MRI to operate

Kastner et al. 1997 Dutrey et al. 1997

van Dishoeck et al. 2003

Starting to image the chemistry in disks

LkCa15

OVRO mm array

Kessler, Qi, Blake et al. 2003

Aikawa et al. 2003

Solid and gaseous CO toward a young, large edge-on disk

Red wing line profiles traces accretion to within 0.1 AU from star
Warm CO gas (up to 200 K), with CO_{gas}/CO_{solid}~10

Need JWST, ELT to survey large number of edge-on disks

Boogert, Hogerheijde & Blake 2002

Transitional disks: dust and gas

When does gas disappear from disk? => timescale Jovian planet formation CO not a good tracer due to freeze-out and photodissociation => observe H₂ directly

Need high mid-IR spectral resolution to detect weak H₂ lines on continuum Thi et al. 2001

Summary

- Mm and IR are both needed to study evolution of gases and solids during star- and planet formation
- High spatial and spectral resolution essential => ALMA, JWST, Herschel, ELTs (need high spectral resolution!), future far-infrared space mission?
- Complex organic molecules are detected both in gases and solids in protostellar regions; are they present in disks?