First Science Results from the Submillimeter Array

Alison Peck Harvard-Smithsonian CfA

Presenting for: Daisuke Iono, Henrik Beuther, Charlie Qi, Kazushi Sakamoto, Peter Sollins, Mark Gurwell, Jun-Hui Zhao and the rest of the SMA team

Eight Antennas

6m dishes composed of 72 aluminum panels

Carbon fiber backup structure

Assembled in summit hangar

For more info, see Peck and Schinckel poster #11

Four configurations based on Reuleaux triangles

Baselines ranging from 7 to 500 m Can move 3 antennas per day

Pointing checked optically, then using single-dish radio measurements

Baseline parameters determined to fraction of a wavelength by tracking

quasars

SMA Receiver System

Mirror 5 (curved) Mirror 6 (flat) LO micros LO chains Grid combiner Mirror combiner VME rack Receiver inserts Cryostat

Mixer micro Vacuum gauges Refrigerator (closed-cycle JT)

UPS

Six receiver inserts

170-240 GHz 2x 260-350 GHz 300-420 GHz 650-710 GHz 820-910 GHz

Automated Tuning For the 230 and 345 GHz LOs

Automated 230 GHz Local Oscillator

Correlator

2 GHz bandwidth in 24 IFs in each of 2 sidebands.

Allows mixed resolution setups, with between 8 and 512 channels in any IF, for high continuum sensitivity as well as sub-km s⁻¹ velocity resolution on lines.

Soon 2 receivers simultaneously for dual-band observations, or dual polarization

Interferometric Imaging at 685 GHz

Observations made in late 2002 using 3 antennas during phase closure demonstration

Imaging difficult, but uvplots show CS(14-13) emission is spatially resolved at central frequencies

Observations of CO(6-5) (691 GHz) and water masers at 658 GHz made this winter with 5 antennas available soon

Young et al 2004

May 20, 2004

High Redshift Galaxies

APM08279+5255: Continuum at 335 GHz Well-known lensed galaxy at z=3.9 Feasibility study for astrometry on high-z galaxies discovered w/ single-dish: 4 hours on source

Peck et al 2004

BR1202-0725: Continuum at 332 GHz plus redshifted CII? (rest freq=158 μm) z=4.7

Iono et al 2004

Interacting Galaxies: VV114

CO(2-1) and (1-0) detected toward both galaxies and overlap region.

Velocity dispersion greatest toward overlap region

Significantly more dense gas toward VV114E, optically obscured galaxy.

Iono et al 2004

R-band background image courtesy J. Hibbard: CO(1-0) image courtesy M. Yun

May 20, 2004

Antennae (NGC 4038/9)

Very preliminary (April 20, 2004)

CO(3-2) – red SMA 10 ptg mosaic,

> CO(1-0) – blue courtesy C. Wilson

Optical V-band – grey courtesy B. Whitmore

Iono et al 2004

CO in M83

CO(2-1)- 3 point mosaic CO(3-2)- single pointing Dotted line=primary beam

Diamond marks visible nucleus Cross is isophotal center in K-band

Sakamoto et al 2004

May 20, 2004

SgrA*: Monitoring and Imaging

Intraday Variability SgrA* flux shown in red, calibrator in blue 340 GHz continuum contours from March 2004 shown with VLA 23 GHz background

Orion-KL at 347 GHz

Continuum image with sub-arcsecond resolution, April 2004

> Source I clearly resolved from the hot core, and several new components identified

May 20, 2004

Massive Outflow in G5.89

227 GHz continuum and resolved molecular line emission

All lines integrated over full velocity range except SiO(5-4), where blue contours show -25-5 km s⁻¹ and red contours show 15-45 km s⁻¹

Sollins et al 2004

8.4 GHz free-free emission image: Wood & Churchwell (1989)

Hot Core in IRAS 16293-2422

Class 0 young stellar object

Panel 1 shows continuum (also shown in grayscale)

SMA images reveal chemical differentiation between the two hot cores

Kuan et al 2004

Solar System: Mars at 230 GHz

First 8 element image obtained, Nov. 2003

Resolved continuum plus emission and absorption show strong diurnal temperature contrast

8 minutes on source

Gurwell 2004

Comet Observations: May 2004

Daytime observations: weather sufficiently good for 235 GHz until 13:00 HST

Qi et al 2004

May 20, 2004

That's fine, but when can I use it?

Observing info: http://sma1.sma.hawaii.edu

First open call for proposals expected August/September 2004

Results shown (and others) can be found at: http://cfa-www.harvard.edu/~dwilner/smasci/sma_earlypapers.html

May 20, 2004