The high redshift Universe and the formation and evolution of galaxies

Simon Lilly

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

80-90% of star-formation at 1 > z > 4 is obscured by dust

Mildly up to heavily extinguished as luminosity increases (as locally)

Very luminous ULIRGs 2 x 10^{12} L_{\odot} (400 M_{\odot}yr⁻¹) produce 10-15% of Universe luminosity at z ~ 2, c.f. 0.3% locally

- c.f. known LBG about 20%

COMBO-17 Wolf et al 2003

Increase in global starformation rate to z ~ 1

Increase in luminosity density in (short-lived) star-formation indicators (i.e. uv continuum, far-IR, H α or [OII], radio continuum

 $\beta \sim 3.0 \pm 0.8$ "old" $\Omega = 1$ $\beta \sim 2.2 \pm 0.8$ $\Lambda = 0.3$

Exploring cosmic frontiers, Berlin May 2004

Down-sizing

Signatures of youth seen in more luminous and presumably more massive objects at earlier times:

 $\frac{\dot{M}}{M}$ (uv-optical) colours, emission line W_0 , irregular morphologies

Exploring cosmic frontiers, Berlin May 2004

Down-sizing

Strong number density evolution of most luminous sources: e.g. radio sources with implied $L_{FIR} > 10^{12} L_{\odot}$ (Cowie et al):

Consistency with local trends

Lookback time t/Gy

M/L of early type galaxies:

Evolves as expected for $z_F \sim 2$ or greater

Disk surface brightnesses –

Declining SFR $\tau \sim 5$ Gyr

∆ log M/L_B

Morphological evolution of galaxy population Not simply λ effect (but beware of SB effects)

Changes in morphology

 $z \sim 3$ "Forming galaxies" in the optical:

Highly irregular morphologies...

Lyman breaks and Lyman α emitters

Exploring cosmic frontiers, Berlin May 2004

Enriched superwinds ...

$z \sim 3$ "Forming galaxies" in the submm:

Sauron Data Lya datacube on z = 3.1 sub-mm source/LAB

SMM J020399-0136 (Genzel et al 2002) z=2.80 M > 3 x 10^{11} M_{\odot} within 8 kpc?

The theoretical paradigm: Λ-CDM

 $\Omega_{\rm m} \sim 0.3, \, \Omega_{\rm b} \sim 0.04, \, \Omega_{\rm L} \sim 0.7, \, h \sim 0.7, \, \text{plus random}$ phase $n_{\rm p} = 1$ fluctuation spectrum

Great successes

- •CMB fluctuations
- •Self-consistent estimates for P(k) over 4.5 dex in scale

Precision cosmology!

We have a quantitatively precise (in principle) "theoretical paradigm" for structure formation <u>and</u> we know how to translate our observations

- → Hierarchical collapse of dark matter haloes
- → Cooling baryons leads to starformation and galaxy formation

Semelin & Coombes 2003

Semi-analytic models: Merger tree, plus prescriptions for gas and stars during merger, cooling rates, SFR and feedback etc.

Hydrodynamical models:

Steinmetz and Navarro

Exploring cosmic frontiers, Berlin May 2004

Successes 2

Possible problems?

 Too many small haloes predicted (and which survive in larger haloes)

Re-ionization prevents cooling into late-forming haloes?

Exploring cosmic frontiers, Berlin May 2004

Possible problems?

- Two many small haloes predicted
- DM haloes are predicted to be too cuspy

NGC 2976 Simon et al (astro-ph/0307154)

 V_{HEL} (km s⁻¹)

-20

2000

BIMA synthesized beem b) 100 b) 2-D CO and H α dynamics at 75 pc resolution Offset -50 RA Offset (*) R.A. Offset (*) Galactocentric Radius (pc) 1000 1500 500 2000 100 Galactocentric Radius (pc) Ha Rotation a) C 500 1000 1500 CO Rotation 90 Ho Radial 90 a) Min. disk CO Racial 80 Ha Systemic 80 70 60 Interaction of baryonic Velocity (km s⁻¹) 50 matter and dark matter -40 e.g. wholesale mass-loss $\rho \propto r^{-\beta}$ 30 of baryons, torqueing of)<β<0.2 20 DM by bar instabilities in 10 baryons etc. 0

100

120

-10 0

20

40

60

Galactocentric Radius (")

80

Possible problems?

- Two many small haloes predicted
- DM haloes are predicted to be too cuspy
- Galaxies are predicted to be too small at a given v_{rot} (angular momentum problem)

Due to angular momentum exchange between DM and baryons during cooling

Possible problems?

- Two many small haloes predicted
- DM haloes are predicted to be too cuspy
- Galaxies are predicted to be too small (angular momentum problem)
- Massive galaxies appear to have formed rather early

Haloes with this amount of baryons predicted - something wrong with star-formation, cooling etc.

- Dark matter physics, cosmology(?)
- Interaction of the baryons with the dark matter
- Interaction of the baryons with themselves: esp. <u>the great</u> <u>unknown of galaxy formation</u>: STAR-FORMATION (also, cooling and shock heating outside of galaxies, AGN interactions inside)

We do not have theory for local star-formation, have only rather sketchy ideas about what regulates disk SFR, and virtually none about "spheroid star-formation", and anyway conditions in the early Universe will differ....

- Star-formation rate and efficiency
- Initial mass function (light and mass)
- Supernova heating feedback, outflows
- Chemical evolution (also cooling etc)

Uncertain feedback loops via photo-, chemical- and mechanical interaction with medium

Galaxy masses at high redshift are uncertain

Galaxy	$\stackrel{\sigma^{\rm a}}{(\rm km\;s^{-1})}$	${{M_{dyn}}^{\mathrm{b}}}_{(10^{11}M_{\odot})}$	${\tau_{min}}^{\rm c}$ (Gyr)	$\begin{array}{c} M_{star}(\tau_{min})^{\rm d} \\ (10^{11} M_{\odot}) \end{array}$	$\tau_{max}^{e}^{e}$ (Gyr)	$\begin{array}{c} M_{star}(\tau_{max})^{\rm f} \\ (10^{11} M_{\odot}) \end{array}$
Q1623-BX274	121	0.28	0.20	1.27(0.70)	5.00	2.76(1.52)
Q1623-MD66	120	0.28	0.05	0.493(0.27)ev	et aleast	tro-151491a981650)eek
Q1623-BX344	92	0.16	0.20	1.06(0.58)	2.00	2.18(1.20)
Q1623-BX453	61	0.07	0.01	0.49(0.27)	∞	0.92(0.51)
Q1623-BX528	142	0.58	0.20	1.09 (0.60)	2.00	2.47(1.36)
Q1623-BX599	162	0.50	0.20	0.83(0.46)	5.00	1.69(0.93)
Q1623-BX663	132	0.45	0.20	1.06~(0.58)	1.00	2.35(1.29)

TABLE 5. COMPARISON OF DYNAMICAL AND STELLAR MASSES

Galaxy dm/dt at high redshift are uncertain

The merger rate:

For a typical galaxy what is

- Δm from continuously forming stars
- Δm from addition of existing stars
- Δm from star-burst in addition of gas

Accumulation of mass

Exploring cosmic frontiers, Berlin May 2004

What is needed (1): More comprehensive phenomenology of galaxies at high redshift

Spitzer: Galaxy stellar masses, obscured star-formation

- ALMA: Molecular gas and dust content of normal galaxies Gas kinematics Obscured star-formation Nature of highly luminous star-bursts
- JWST: Galaxy populations (e.g. LMC at rest–V at z = 5) Gas/stellar kinematics, metallicities, reddening etc Galaxy morphologies (bars etc.)
- ELT: More of the same (already at limits of 8-10m telescopes), especially complementarity with ALMA and JWST.

Key questions: stellar mass assembly via star-formation, mergers or starbursts? Physical processes in high z ULIRGs? Role of environment? Chemical evolution of IGM? What is needed (2) Studies of galaxies today – e.g. secular evolution of disks

Most small bulges (later than Sbc) made from disk instabilities?

e.g. SDSS size distribution (Shen et al 2003)

How to make merger-less disks in hierarchical models?

What is needed (3): Extension to the other components in Universe

e.g. dark matter

What is needed (3): Extension to the other components e.g. gas

Galaxy formation is only ~10% efficient.

At $z \sim 3$, the neutral gas alone > the stellar mass

Flourescence of ionizing radiation for $N_{HI} > 10^{18} \text{ cm}^{-2}$ NB: DLA ($N_{HI} > 10^{22} \text{ cm}^{-2}$) systems avoid galaxies

> Fluorescent Lyα in 6x6x6 Mpc³ Cantalupo et al, 2004

What is needed (4): Extremely large samples of galaxies

1 (a) Evolution must depend on mass, environment (directly and through epoch of collapse), stochastic processes....

(b) Want to use homegeneity of Universe to relate populations at different epochs.

2. Cosmic variance – a cautionary example

COSMOS (Scoville et al)

1.4×1.4 deg² ~100+×100+ Mpc²

- 600 HST/ACS pointings (F814W)
- Subaru/CFHT UBVRIZ @ 26-27 mag
- CSO 1.1mm @ 2 mJy
- Galex near-UV @ AB=26
- XMM @ 800ksec
- ~90,000 redshifts VIMOS
- Spitzer 3-160 mm 2mJy – 40 mJy
- VLA S1.4 ~ 7.5/17 μJy

300,000 $\rm I_{AB}$ < 25 objects, of which

- 160,000 z > 0.7 galaxies
- 50,000 z > 1.5 galaxies
- 15,000 0.7 < z < 2 ERO ellipticals
- 20,000 1.8 < z < 3.5 LBG
- 5000 2 < z < 3.5 "red galaxies"
- 40000 XMM AGN
- 3000 SCUBA ULIRGs
- 120 X-ray clusters

Exploring cosmic frontiers, Berlin May 2004

Towards Reionization...

Lyman break galaxies in the HDF, GOODS, UDF etc

Lyman α emitting galaxies

SDSS J1148

MAMBO 1.2 mm (contour) 5/N on 5LOAN z' image.

Dust at z=6.42!

7x10° M ____ in <700 Myr

Submm and CO detection

in the highest-redshift quasar:

- Dust mass: 10⁸ 10⁹
- H2 mass: 10^10
- Star forming rate: $10^{3}/yr$
- co-formation of SBH and young galaxies

CO 3-2 (VLA), 6-5, 7-6 (PdBI)

Walter, Bertoldi, Carilli et al. 2003, Nature Bertoldi, Cox, Neri et al. 2003, A&ALet

16.5 16.0

17.0

Generic prediction: Hernquist & Springel analytic modelling of numerical hydro simulation gives exponential decline at high redshifts

Exploring cosmic frontiers, Berlin May 2004

What did it?

- Ionizing spectrum λ < 912Å
- Escape fraction
- Clumpiness and Temperature in IGM

With reasonably optimistic assumptions, known LBG in GOODS + UDF are in fact <u>sufficient</u> to ionize between 6 < z < 7 (Stiavelli et al, c.f. Bunker et al)

Need better probes of when and how reionizing proceeded

- Metal forest (e.g. OI 1302)
- SKA 21 cm emission etc

Exploring cosmic frontiers, Berlin May 2004

Reionization

Low metallicity signatures – Panagia etc

Exploring cosmic frontiers, Berlin May 2004

Hydrodynamic simulations of first star formation - single massive stars one per halo?

First Light star-formation

observe individually (AB ~ 40)

e.g. Mackey, Bromm and Springel (2003):

Phase 1: H₂ cooling in haloes

Phase 2: H₂ dissociated but still required for star-formation

Phase 3: Metal cooling \rightarrow normal imf?

	redshi ft	f _{PopIII}	f _{SN}	m _{sn}	Rate yr ⁻¹ deg ⁻²	Adjust ed
Macke y et al	<i>z</i> >15	3×10⁻⁴	1	250	50	50
Heger et al	<i>z</i> ~20	10 ⁻⁶	1	250	120	0.3
Cen	z>13	10-4	0.2 5	100	620	43
Wise & Abel	z~10				2500	0.2
	z~15	2×10 ⁻⁴	0.1	225	4	
	z~25	10 ⁻⁵	0.1	225	0.2	

Observability of Pop III $PISNe (140-250 M_{\odot})$

The dark ages..... LOFAR/SKA!

We have a theoretical paradigm, but the predictions from this are very uncertain due to baryonic physics, especially star-formation.

We know where most of the energy emitted by objects is, and can paint a broadly consistent picture of this out to $z \sim 6$.

Need much better astrophysical analysis of "known objects" – certainly multi-band and multi-facility (Spitzer-JWST, ALMA, ELT, SKA....) – in order to move beyond "consistency"

The earliest phases z > 6 are highly uncertain, but probably accessible to observation