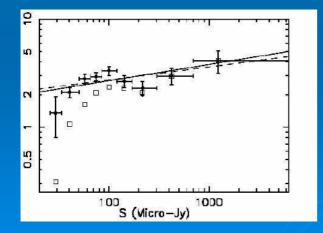
Deep Surveys with the VLA, MERLIN, and the SKA

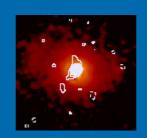
> Ken Kellermann NRAO


Why do Deep Radio Surveys?

- Accurate astrometry
 - Identify optical, IR, sub-mm, X-ray counterparts
- High angular resolution
 - Distinguish galaxies from AGN
 - Relate black hole formation to host galaxy properties
- To see through the gas and dust
- Early radio telescopes could detect strong radio galaxies at z~1
- VLA
 - Radio galaxies, quasars, AGN (massive BH's) to z >>1
 - Moderate star forming galaxies (M82) & LLAGN, and radio quiet quasars to z ~ 1
 - Beyond limits of most sensitive optical telescopes
- Expanded VLA (EVLA)
 - Star forming galaxies, RQQ, and LLAGN to z > 1

Deep Surveys with the SKA

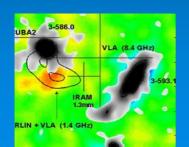
- SKA will have two orders of magnitude better sensitivity sufficient to observe
 - even normal galaxies at early cosmological epochs (z ~ 1) to trace early history of the formation of stars and galaxies
 - Radio quiet quasars and LLAGN to z >> 1 to trace formation and evolution of MBHs
 - To try to understand the relation between BHs and star formation
- Discover new things (e.g., quasars, pulsars, cosmic masers, CBR, gravitational lensing, jets, cosmic evolution, etc)

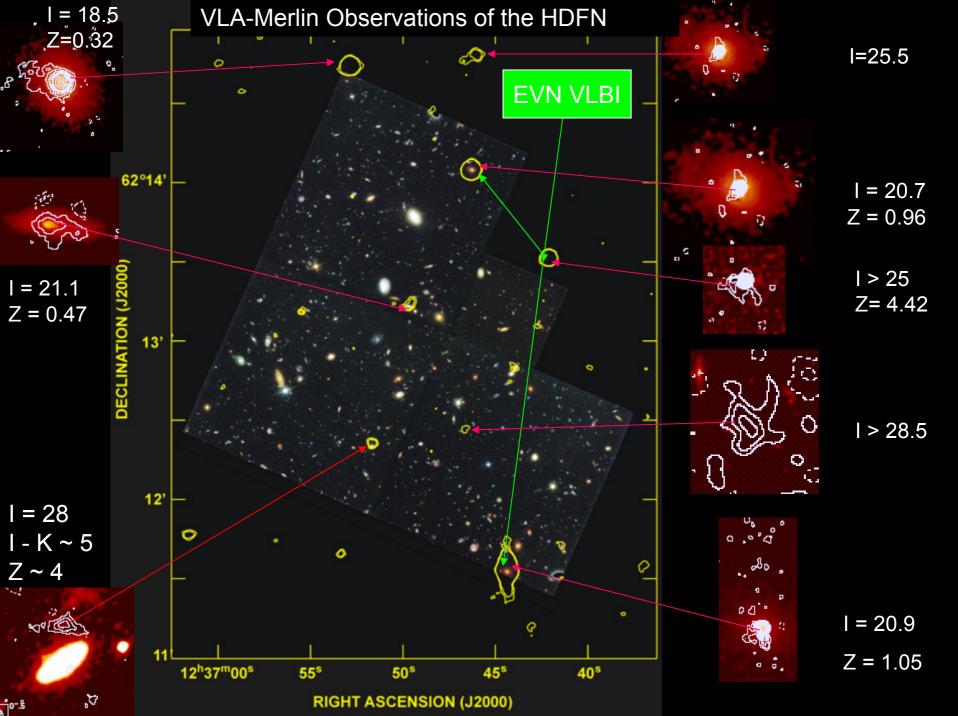


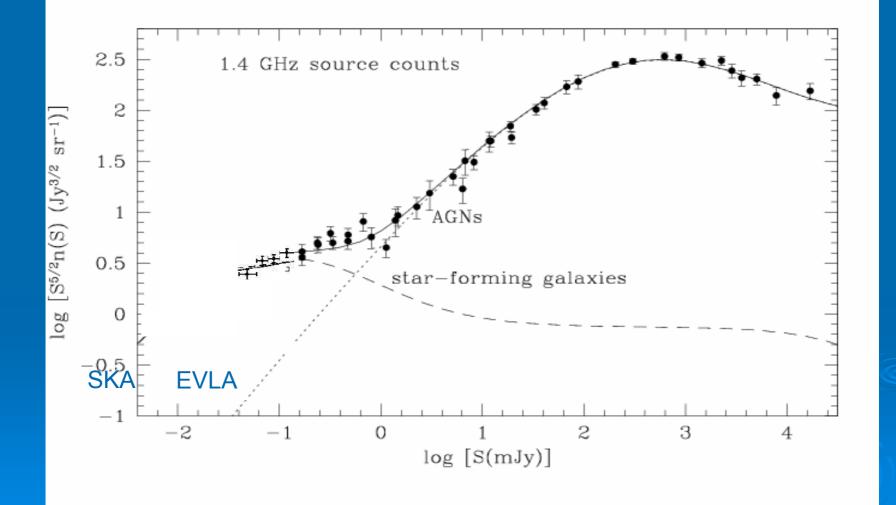
Limits of Radio Telescopes

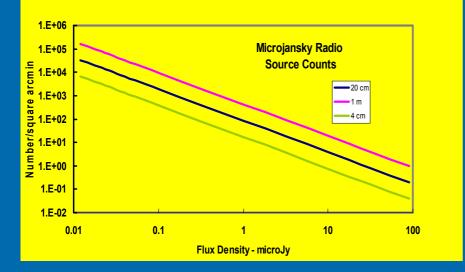
- Strong radio galaxies and quasars
- Weak radio galaxies
- Star forming galaxies
- Normal galaxies



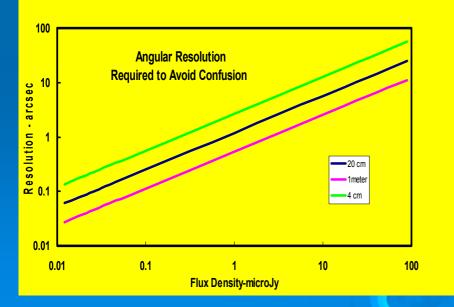


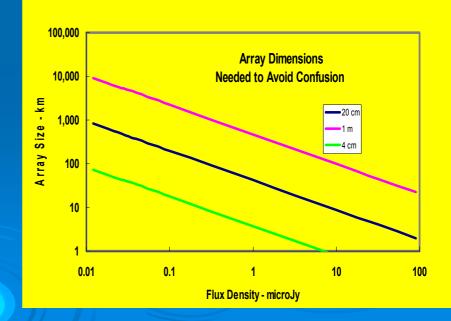


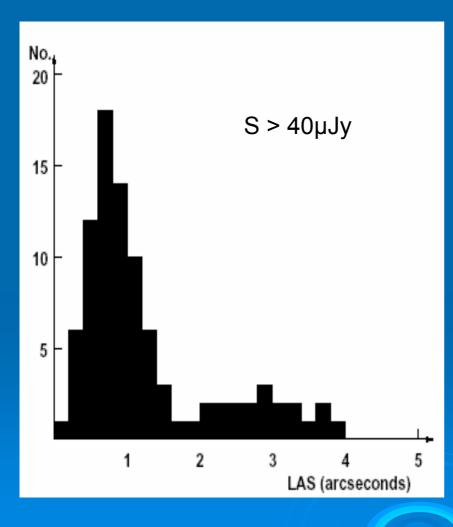

Some Existing Deep Surveys


Field	λ_{cm}	$\sigma_{\mu Jy}$	Ν	Reference
	CIII	poy	arcmin ⁻²	
HDF _{VLA}	4	1.8	0.5	Richards et al. 1998, ApJ 116, 1039
	20	8	0.6	Richards, 2000, ApJ, 533, 611
HDF _{VLA+MERLIN}	20	3	0.6	Muxlow et al. 2004, MNRAS, in press
HDFwsrt	20	8	8.0	Garrett et al. 2000, A&A, 361, L44
HDF _{VLBI} 0.025sec	20	<mark>35</mark>	0.2	Garrett et al. 2001, A&A 366, L5
SSA13 _{VLA}	4	1.5	0.6	Fomalont et al. 2002, AJ, 123, 2402
SSA13 _{VLA}	20	5	1.5	Fomalont et al. 2004, ApJS, in press
CDFS/UDF _{VLA}	20	6	0.7	unpublished

Array Sensitivity


Array	Aeff	T _s	A _{eff} /T (m²/K)	T _s (Jy)	σ_{nJy} – 400 hrs
ATNF	1600	35	45	60	4,000
WSRT	4100	30	140	20	2,500
VLA	7300	40	180	16	2,000
e-MERLIN	4000	25	160	18	250
EVLA I	8,000	30	270	10	140
EVLA II	10,000	30	370	8	100
SKA	400,000	20	20,000	0.2	2





Resolution requirements to avoid confusion for point sources

Angular size Distribution of microJy Radio Sources from VLA-Merlin imaging of the HDFN Muxlow et al. MNRAS (In press)

- $N(S_{40\mu Jy}) = 0.5 \text{ armin}^{-2}$
- N(S_{400nJy}) = 400 sources armin⁻²
- If θ ~ 1 arcsec, 15% area covered by radio sources and will overlap
- Spectrum (color) and surface brightness differences may help disentangle overlapping sources

EVLA & e-MERLIN – SKA Pathfinders

- EVLA has an order of magnitude improvement in sensitivity over VLA
- EVLA and e-MERLIN have an order of magnitude improvement in resolution over VLA.
- Fill-in missing spacings between VLA and VLBA. EVLA gives continuous coverage from 30m to 8000 km.

Summary

- Sub µJy sources mostly due to star formation + weak AGN + ???
- EVLA will have improved sensitivity, angular resolution, and image quality needed to characterize the sub-µJy sky.
- Deep surveys made with the SKA will have sufficient sensitivity to
 - Observe radio galaxies, quasars active star forming galaxies anywhere in the Universe
 - Observe normal galaxies at z ~ 1
- With more than an order of magnitude improvement in sensitivity over other radio telescopes the SKA will have the potential for discovering new phenomena and to raise new questions.
- To reach theoretical noise the SKA will require sufficient angular resolution to avoid confusion. This implies array dimensions of ~ 1,000 km at 20 cm
- Natural confusion may limit the ultimate sensitivity of deep surveys