Astrometric Detection of Extrasolar Planets

> Jose C. Guirado Universidad de Valencia Spain

Capabilities of astrometry
Capabilities of radio astrometry - SKA
Technique cooperation: the case for AB Dor

Planet Detection Score

Radial velocity is a very efficient technique
Astrometry is the technique of the past...
...and the technique of the future

Astrometry

- * Determination of 3D orbit. Unambiguous mass determination.
 - (masses determined by Doppler techniques are coupled with orbit inclination)
- * Young and active stars may be studied
- * Sensitivity to longer periods (larger a's):

$$\theta = \frac{m_p}{M_s} \frac{a_p}{d}$$

- * Expected very high-precision:
 - SIM (4µas) & GAIA (1µas)

Mass vs. Separation

Radio Astrometry

M. Perryman (2000)

Radio Astrometry

* Space-based expected (2010) very highprecision in the optical:

- SIM (4μas) & GAIA (1μas)

Radio Astrometry

The S5 Polar Cap sample

- Flat spectrum radio sources:
 8 QSOs
 5 BL-Lac objects
- Long-term astrometric program
- * $\lambda = 3.6, 2, 0.7$ cm
- Bootstrapping techniques

Ros et al 2000 Pérez-Torres et al 2004

The technique

High resolution and astrometric precision

*****Theoretical precision for an interferometer:

$$\sigma_{\alpha,\delta} = \frac{1}{2\pi} \times \frac{1}{SNR} \times \frac{\lambda}{D}$$

	D	λ	σ _{SNR>15}
	300 km	6cm	440 µas
-	3000km	6cm	44 µas
	300km	1.3cm	90 µas
	3000km	1.3cm	9 µas

* Sources of error:

- $-\Phi$ -extrapolation
- Differential contribution from atmosphere and ionosphere
- Structures of reference and target source

Sources of Error in Astrometry: Solutions for new instruments

***** Multi-beam System:

- $\underline{\Phi}-extrapolation \text{ problem solved} simultaneous} \\ observation from target and reference$
- Different lines of sight: tomography of the atmosphere/ionosphere - removal of propagation medium biases
- ***** On-the-fly mapping:
 - Removal of <u>structure contribution</u> of reference (and target)

Sensitivity

SKA: Sensitivity and High Resolution

- * Baselines of thousands of kilometers will match the progress in sensitivity with the present VLBI resolution
- * Sensitivities expected: far below μJy/beam
- The Φ-referencing increases the integration time from minutes to hours → detection of weaker sources

Search for Planets and Star Companions: VLBI Program

- * Antennas at Effelsberg/Robledo/ Goldstone
- ★ Single baseline: ~1 mas astrometric resolution
- * Search for companions in
 - stars nearby the sun (10pc)
 - small mass
 - single (or wide separation binaries)
 - with (some) radio emission

* dMe stars look the most suitable targets

Search for Planets and Star Companions: VLBI Program

***** dMe stars look the most suitable targets

Star	Distance	Flux Density	Comments
	(pc)	(mJy)	
Wolf 47	9.3	0.3 - 4.0	Refs: 3, 9
YZ CMi	6.1	0.5 - 1.5	Refs: 7
ADLeo	4.9	0.2 - 2.1	Refs: 7
V1054Oph	5.7	1.2	Refs: 8
EVLac	5.1	0.3 - 4.0	Refs: 8, 9
UV Cet	2.6	1.0 - 2.0	Binary (2"); Refs: 6
Wolf 630 A	6.2	0.2 - 2.0	Binary (0.2"); Refs: 2, 4
DO Cep	5.1	0.4 - 5.5	Binary (3"); Refs: 1
EQ PegB	6.6	1.1 - 5.5	Binary (5"); Refs: 5, 9

Refs: (1) White et al (1989), (2) Phillips et al (1989), (3) Hewitt et al (1989),

(4) Fomalont & Sanders (1989), (5) Benz et al (1995), (6) Benz et al (1998),

(7) Pestalozzi et al (2000), (8) Leto et al (2000), (9) This work

Search for Planets and Star Companions: VLBI Program

***** dMe stars look the most suitable targets

Star	Distance	Flux Density	Comments
	(pc)	(mJy)	
Wolf 47	9.3	0.3 - 4.0	Refs: 3, 9
YZCMi	6.1	0.5 - 1.5	Refs: 7
ADLeo	4.9	0.2 - 2.1	Refs: 7
V1054 Oph	5.7	1.2	Refs: 8
EV Lac	5.1	0.3 - 4.0	Refs: 8, 9
UVCet	2.6	1.0 - 2.0	Binary (2"); Refs: 6
Wolf 630 A	6.2	0.2 - 2.0	Binary (0.2"); Refs: 2, 4
DO Cep	5.1	0.4 - 5.5	Binary (3"); Refs: 1
EQ PegB	6.6	1.1 - 5.5	Binary (5"); Refs: 5, 9

Refs: (1) White et al (1989), (2) Phillips et al (1989), (3) Hewitt et al (1989),

(4) Fomalont & Sanders (1989), (5) Benz et al (1995), (6) Benz et al (1998),

(7) Pestalozzi et al (2000), (8) Leto et al (2000), (9) This work

Astrometric Precision

The star's astrometric reference point may change from epoch to epoch due to instabilities of the star's surface. This will limit te astrometric precision. However:

- The size of the photospheres ranges from 0.2 to 0.8 mas.
- Motion of the hot-spots should be averaged out after several epochs.
- The quiescent flux is easier to detect at 8.4 GHz. Flaring is more common at smaller frequencies.

Technique cooperation: the case of AB Dor

- Very well known southern-hemisphere PMS star (mv = 6.9)
 Importat feature: FAST ROTATOR (0.5 days):
 - ***** Broadening of the spectral lines, limiting precision of Doppler techniques to 5km/s
 - * Present radio emission via dynamo effect

Technique cooperation: the case of AB Dor

Very well known southern-hemisphere PMS star (mv = 6.9)
 Importat feature: FAST ROTATOR (0.5 days):

- ***** Broadening of the spectral lines, limiting precision of Doppler techniques to 5km/s
- * Present radio emission via dynamo effect

Guirado et al. (1997, ApJ, 490, 835)

40

20

RA (mas)

0

-20

Orbit Determination

 Weighted-least-squares fit of the VLBI+HIPPARCOS positions to estimate simultaneously

***** 5 astrometric parameters

 $\alpha,\,\delta,\,\mu_{\alpha},\,\mu_{\delta},\,\pi$

7 orbital parameters (Thieles-Innes method)

 $P,\,a_1,\,e,\,i,\,\omega,\,\Omega,\,T_o$

Mass estimate (ABDor C):
 0.08 - 0.11 M₀

100

50

RA (mos)

0

200

0

RA (mas)

-200

(New) Orbit Determination

 Mass estimate (ABDor C): 0.08 – 0.11 M₀

- Mass estimate (three techniques):
 0.084 +/- 0.004 M₀
- Even a modest detection of the position of ABDorC would lead to very precise determination of its mass.

Summary

- * The SKA will increase the observed radio stars from hundreds to millions of objects
- ***** SKA in astrometric mode:
 - Link with the optical astrometric satellites (SIM, GAIA)
 - Discovery of low-mass objects and exoplanets
- * High resolution is needed to reach the highest astrometric precision
- * Cooperation with other techniques is needed to confirm or improve the detections.