The Evolution of the Cosmic SN Rate

Massimo Della Valle
Arcetri Astrophysical Observatory
Science cases (for OWL)

- Evolution of cosmological parameters
- Large scale structure
- Galaxy formation
- (Dark?) matter distribution
- SNe at high redshift
- Star formation history
- Proto Globular Clusters
- Primordial stars (Pop III)
- Re-ionization epoch
Roberto Gilmozzi, ESO
Nino Panagia, ESA/STScI
Jacqueline Bergeron, IAP
Piero Madau, UCSC
Jason Spyromilio, ESO
Philippe Dierickx, ESO
Science with OWL: a practical case
The cosmic SN rate up to $z \sim 20$

SNe as calibrated standard candles, (SNe-Ia, Phillips 1993) provide a direct measurement of q_0 at $z > 0.3$ (Perlmutter et al. 1998, 1999; Riess et al. 1999)
Science with OWL: a practical case
The cosmic SN rate up to $z \sim 20$

SNe as calibrated standard candles (Phillips 1993, SNe-Ia) provide a direct measurement of q_0 at $z>0.3$ (Perlmutter et al. 1998, 1999, Riess et al. 1999)

The evolution of the cosmic SN rate provides a direct measurement of the cosmic star formation rate.
a) The rate of CC SNe (II & Ib/c) is a direct measurement of the death rate of stars $M > 8 \, M_\odot$ (e.g. Iben & Renzini 1983) $> 40 \, M_\odot$? Normal II SNe? Normal or Peculiar Ic/b? Collapsars?
a) The rate of CC SNe (II & Ib/c) is a direct measurement of the death rate of stars $M > 8 \, M_\odot$ ($> 40 \, M_\odot$? Normal II SNe? Normal or Peculiar Ic/b? Collapsars?)

b) The rate of type Ia SNe provide the history of star formation of moderate mass stars, 3–8 M_\odot
a) The rate of CC SNe (II & Ib/c) is a direct measurement of the death rate of stars $M > 8 ~ M_\odot$ ($>40 ~ M_\odot$? Normal II SNe? Normal or Peculiar Ic/b? Collapsars?)

b) The rate of type Ia SNe provide the history of star formation of moderate mass stars, $3-8 ~ M_\odot$

c) The evolution of the rate can clarify the nature of the progenitors of type Ia SNe (WD+WD or WD+MS) (Madau, Della Valle & Panagia 1998)
Science with OWL: a practical case

The cosmic SN rate up to z ~ 20

SNe as calibrated standard candles (Phillips 1993, SNe-Ia) provide a direct measurement of q_0 at $z>0.3$ (Perlmutter et al. 1998, 1999, Riess et al. 1999)

The evolution of the cosmic SN rate provides a direct measurement of the cosmic star formation rate.
SN rate \rightarrow Star formation Rate

For a Salpeter IMF with $M_{up}=100\ M_\odot$

50% of all SN II are produced by stars with $8 < M_\odot < 13.1$ and 50% of the mass produced in SNe is in the interval $8-21.6\ M_\odot$

A $13\ M_\odot$ MS star has $L=8000\ L_\odot$ and $T_{eff}=22000\ K$

A $21.6\ M_\odot$ L=$35000\ L_\odot$ and $T_{eff}=27000$
More than 50% of the stars producing SNe are poor sources of ionizing photons and of UV continuum photons
70% of the photons 912-2000 Å UV continuum photons
Science with ELTs

N_{Ly} vs. M_{\odot}

$\sim 10\%$
$\sim 90\%$
The bulk of the UV radiation both in the Balmer and in the Lyman continuum is produced by stars more massive than 40 M_\odot.
SN rate \rightarrow Star formation Rate

Both the Halpha fluxes and the UV fluxes measure only the very upper part of the IMF [$>40 \, M_\odot \rightarrow 8\% \, (M_\odot > 8)$]

therefore:
SN rate → Star formation Rate

Both the Halpha fluxes and the UV fluxes measure only the very upper part of the IMF \([>40 \, M_\odot \rightarrow 8\% \, (M_\odot > 8)]\)

therefore:

They are NOT good star formation rate indicators because

a) they require a huge extrapolation to lower masses

b) the extrapolation depends on the value of Mup which is not well known and may be not a constant quantity in different environment (Bressan et al. 2002) or at different z (Heger et al. 2002)
SN rate → Star formation rate

SNe provides a measurements of the star formation rate which is:

1. Independent of other possible determinations
2. More direct, because the IMF extrapolation is much smaller
3. More reliable because it is based on counting SN explosions rather than relying on identifying and measuring the sources of ionization (if using H-alpha flux) or the sources of UV continuum
Supernovae can be missed because of the extinction

Maiolino et al. 2002
Science with ELTs

The plot shows the number of supernovae (# SNe) as a function of A_v. There is an increase in the number of optical supernovae, with a peak at $A_v = 1$. The supernova SN2001db is highlighted with a red bar at $A_v = 6$. The x-axis represents A_v, ranging from 0 to 7.
Ingredients of the simulation

1. OWL Performances: the imaging and spectroscopic limit of OWL as a function of S/N ratio and integration time
2. OWL Field: 2x2 arcmin (K)
3. Number of SNe expected in a single OWL Frame
4. SED of SNe (type II, Ia, Ib/c, Pop III)
5. Morphology of lightcurves and absolute magnitude at maximum of SNe (Control Time)
6. Distribution of SNe into the different spectroscopic types
7. Cosmology ($\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$)
Science with ELTs

1. OWL Performances

http://www.astro.physisc.ox.ac.uk/imh/ELT

JWST: (Panagia 2003, Stiavelli 2003)
2. & 3. Number of SNe in a single OWL Frame

8 SNe x OWL field (yr\(^{-1}\))

Madau et al. 1998

Miralda & Riess 1998

0.03 SNe/arcmin\(^2\) yr\(^{-1}\) @ z=20

Heger et al. 2001
Madau, Della Valle & Panagia 1998
4. Spectral Distribution Energy

(Panagia 2003)

![Graph showing spectral distribution energy](image)
Science with ELTs

Pop III SNe

Heger et al. 2001
Observational strategy is based on the control time methodology (Zwicky 1936). The typical light curve width around maximum is 15-20 days and most SNe will occur at $z<5 \rightarrow$ light-curve width in the observer rest-frame about 100-120 days. 4 exposures at time intervals of 3 months will cover 1 year.

Barbon, Ciatti & Rosino 1974

$M_B = -19.49 \pm 0.04$

$M_B = -19.0 \pm 0.6$

$M_B = -17.5 \pm 0.6$

(Saha et al. 2001; Patat et al. 1994)
% of SNe in the different types

46% type II Normal (mostly plateau)
16% type II Bright (mostly linear)
20% type Ia
15% type Ib/c
0.5% hypernovae
1.5% SNe from Pop III

Mannucci et al. 2004; Della Valle et al. 2004; Heger et al. 2001;
Podsiadlowski et al. 2004; Cappellaro et al. 1997
SNe-II Normal

\[\text{erg cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1} \]

\[\lambda(\mu) \]

\[10^{6}s \& S/N=10 \]

\[R=1000 \]
\[R=100 \]
\[R=5 \]

\[z=3 \]
\[z=5 \]
SNe II-Bright

10^8s & S/N=10

$z=3$

$z=5$

$z=8$
SNe Ia

Science with ELTs

\[\text{erg cm}^{-2} \text{s}^{-1} \text{Å}^{-1} \]

\[10^6 \text{s} & \ S/N=10 \]

\[\lambda(\mu) \]

\[z = 3 \]
\[z = 4 \]
\[z = 6 \]

\[R=1000 \]
\[R=100 \]
\[R=5 \]
SNe Ib/c

$10^6 s \& S/N=10$

$R=1000$

$R=100$

$R=5$

$z=3$

$z=4$

$\text{erg cm}^{-2} \text{s}^{-1} \text{Å}^{-1}$

$\lambda(\mu)$
Pop III SNe

![Graph showing the relationship between erg cm$^{-2}$ s$^{-1}$ Å$^{-1}$ and $\lambda(\mu)$ for different values of radius R and redshift z. The graph includes curves for R=5, R=100, R=1000, and redshift $z=20$. The y-axis represents the energy density in erg cm$^{-2}$ s$^{-1}$ Å$^{-1}$ and the x-axis represents the wavelength in μ (microns). The graph indicates a peak at 10^5 sec with S/N=10.]
SN types vs. redshift

SNe Ia (3-8 M_\odot) visible up to $z \sim 5$ Blind below 2400Å, K last useful band

SNe II (8-40 M_\odot) visible up to $z \sim 8$ Strong UV emitters (time-dilated UV flash)

Pop III SNe (100-300 M_\odot) visible to $z \sim 20$ (Heger & Woosley 2002)
We plan to image 50 fields in the J, H and K bands (1h each) at 4 different epochs (="SN search") +
3 epochs in the K band for the photometric follow-up (i.e. seven K photometric points for each SN) +
4h for each SN (z< 4.5-5) to get the spectroscopic classification +
4h for each SN (z~20; 4 epochs 120h)
Grand Total=600h (search)+150h (K follow-up)+200h(spectr. II & Ia)+120h (spectr. Pop III SNe)=1070h+10%
Results of the Simulation

1200h or 150 nights to study 400 SNe up to $z = 20$

This is about twice as much the size of a current Treasury programme (450 orbits) and it is comparable with SNAP (now Join Dark Energy Mission), about 2000 SNe (Ia) in 2 yr ($z < 1.7$).

1200h+200h (II epoch spectroscopy)
$I_{50} - A_T = 5.869 \log (v_{50}/5000)$

$\chi^2 = 0.72$

$\sigma = 0.32 \text{ mag}$

$\chi^2 = 9.90$

$\sigma = 0.83 \text{ mag}$

Hamuy 2003
Science with ELTs

\[\Omega_m = 0 \quad \Omega_\Lambda = 1 \]

\[\Omega_m = 0 \quad \Omega_\Lambda = 0 \]

\[\Omega_m = 0.3 \quad \Omega_\Lambda = 0.7 \]

\[\Omega_m = 1 \quad \Omega_\Lambda = 0 \]
Science with ELTs
Science with ELTs

3.9×10^{-6} SN s$^{-1}$

Heger et al. 2001
Science with ELTs
3.9×10^{-6} SN s$^{-1}$

Heger et al. 2001

$\Omega_m=0 \quad \Omega_\Lambda=1$

$\Omega_m=0 \quad \Omega_\Lambda=0$

$\Omega_m=0.3 \quad \Omega_\Lambda=0.7$
Conclusions

An ELT sample of SNe provides a measurements of the star formation rate up to z=20 which is:

1. Independent of other possible determinations
2. More direct - because the IMF extrapolation is much smaller
3. More reliable because it is based on counting SN explosions rather than relying on identifying and measuring the source of ionization (if using H-alpha flux) or the source of UV continuum
4. We can learn to what extent the IMF was more skewed toward massive stars (relatively to a normal Salpeter) at low metallicities
Conclusions II

5. Disentangling models alternative to Λ
 - Supernovae at z up to ~10: quintessence (?)

6. Also ideal to probe the progenitors of type Ia SNe (sd vs dd)

7. To probe the physical properties of the ISM and IGM at $z>10$ through high spectral resolution ($R \sim 10^4$) of Pop III SNe (feasible with 50-100m)

8. To explore the metal enrichment of the IGM at early epochs (up to $z \sim 4$) via observations of bright type II and Ia at resolution of ~ 1000 (with 50-100m)
Madau, Della Valle & Panagia 1998
Science with ELTs

Dahlen et al. 2004
Conclusions III

GRB/SN connection:
- Hypernovae (peculiar type Ic) 1998bw/GRB 980425 (Galama et al. 1998), 2003dh/030329 (Stanek et al. 2003; Hjorth et al. 2003) 2003lw/031203 (Malesani et al. 2004, in press) (z < 0.2 and faint gamma sources: 10^4-10)
- Normal type Ic (?) 2002lt/GRB021211 (Della Valle et al. 2003) (z=1)

What are the progenitors of GRBs at very high z?
LIGO Gravitational Wave Observatory (see also Virgo, Geo, Tama 300 and Aciga)

\[M = 100-300 \, M_\odot \quad E_{GW} \sim 10^{-3} M_\odot c^2 \]

\[\Rightarrow h \sim 10^{-22} \]
Science with ELTs

HF Sources of Gravitational Waves

Core-Collapse SN, d=10 kpc
- 2D: Polytropic EOS
- 3D: Polytropic EOS
- 2D: "realistic" EOS

Coalescing NS, d=20...200 Mpc

Amplitude $|h_{TT}| \times \nu^{1/2}$

Frequency ν [Hz]