The Dust and Gas Content of Quasars and Galaxies in the Early Universe

> Pierre Cox Institut d'Astrophysique Spatiale Orsay, France

Exploring the Cosmic Frontier, Berlin – 18-21 May 2004

Collaborators

- - F. Bertoldi, MPIfR, Bonn, Germany
 - A. Omont, IAP, Paris, France
 - A. Beelen, IAS, Orsay, France
 - C.L. Carilli & A. Petric, NRAO, Socorro, USA
 - J. Pety, R. Neri & R. Zylka, IRAM, Grenoble, France
 - F. Walter & K.L. Lo, NRAO, Socorro, USA
 - X. Fan, Steward Observatory, Tucson, USA
 - M.A. Strauss, Princeton University Observatory, Princeton, USA
 - R. Genzel (MPE, Garching), R.J. Ivison & T. Greve (ATC, Edinburgh), A.W. Blain & S.C. Chapman (Caltech, USA), I.R. Smail (ICC, Durham)

Origins: How were galaxies formed?

- Smooth hot Universe 300,000 years after Big Bang
- \Rightarrow 12 billion years later, a highly structured Universe of galaxies, containing stars, & planets
- When was the 'first light' in the Universe?
- How and when are the different components of galaxies (disks and spheroids) formed?
- What physics controls the formation of stars in young galaxies?
- How do galaxies exchange material with their surroundings?
- How is the formation of a galaxy linked to the formation of the black hole at the center?

ULIRG Spectrum and Negative K-correction

The submillimeter/millimeter & radio domains

- Non-thermal radio
- Thermal dust
 - Dominates luminosity
 - Hotter in AGN?
 - Mid-IR flatter in AGN?
 - Mid-IR spectral features missing in AGN
- Molecular and atomic lines
 - $\, \text{Mm CO/HCN}$
 - Far-IR: C/N/O
 - Mid-IR: C-C/C=C/H $_2$
- Magnification

The IRAM Instruments

The Very Large Array

The galaxy cluster A 1835 Deep Fields; Optical & Submm Observations

- SCUBA image at 850 μm superimposed on an optical image (lvison et al. 2000). Complementary informations on the cluster: the submm sources are weak in the optical and viceversa.
- 100-200 Deep submm field Sources known
- Only a few (until last year) for which redshift is measured
- Hence CO followup observations are/were difficult

Why study Quasars at high redshift?

- Coeval formation of massive black holes and stars
- Spheroidal Galaxies in Local Universe contain Massive Black Holes
 - $-M_{\rm BH} \propto M_{\rm Spheroid}$
 - $-M_{\rm BH} \propto \Delta(V_{\rm Spheroid})$
- QSOs contain Black Holes with $M_{\rm BH} > 10^9 \, M_{\odot}$
 - Associated with Massive Galaxies: $M>10^{11}\,M_{\odot}$
- Strong metal emission lines and dust: Rapid Enrichment

Relationship between M_{BH} and σ_e

- $M_{BH} = 1.2 \pm 0.02 \times 10^8 \,\mathrm{M_{\odot}} (\sigma_{\mathrm{e}}/200 \mathrm{km \, s^{-1}})^{3.75 \pm 0.3}$
- \bullet Small scatter in M_{BH} at fixed σ_e
- Implies that the central black hole masses is closely related to properties of the host galaxy's bulge
- Consistent with the idea that the growth of supermassive black holes and massive bulges occured simultaneously

Gebhardt et al. (2000); Shields et al. (2003)

Sample of high-z Quasars observed at 1.25 mm

 ≈ 200 optically selected, luminous, radio-quiet QSOs (from SDSS, PSS, PG) at 1 < z < 6.4 to study dust (1.25 mm) and molecular gas

Infrared Luminosity of High-z Quasars

30% Detection Rate at z > 1.8

Optical & Infrared Luminosities of Quasars

Weak correlation of L_{FIR} vs M_B ? $M_B > -26 \Rightarrow 10\%$ detected; $M_B < -26 \Rightarrow 30\%$ detected Omont et al. (2003) A&A 398, 857; Beelen et al. (2004)

z > 6 Quasars: Probing the End of Reionisation

J1148+5251: most distant QSO known

Fan et al. (2003); White et al. (2003); Djorgovski et al. (2003)

Dust in z > 6 Quasars

J1148+5251: MAMBO 1.2 mm map

Fan et al. (2003); White et al. (2003); Bertoldi, Carilli, Cox al. (2003)

Spectrum J1148+5251 at z = 6.42

Beelen, Benford, Cox et al. (2004)

Properties of the z = 6.42 **QSO J1148+5251**

• Distance

-z = 6.42 – most distant QSO known, ≈ 850 million years after Big Bang

• Optical Properties (Black Hole) – Fan et al. (2003); Willott et al. (2003)

$$-M_{1450} = -27.8, \ L_{bol} \sim 10^{14} L_{\odot}$$
$$-M_{BH} \approx 3 \times 10^9 M_{\odot} \quad \Rightarrow \quad M_{bulge} \approx 10^{13} M_{\odot}$$

• Millimeter (Bertoldi et al. 2003) & Radio Measurements (Carilli et al. 2003)

$$-S_{250} = 5.0 \pm 0.6 \text{ mJy}$$

 $-S_{1.4} = 55 \pm 12 \,\mu \text{Jy} \Rightarrow \text{Radio/FIR relation}$

• Derived Properties

$$-L_{\rm FIR} = 1.2 \times 10^{13} L_{\odot}$$
 (for $T_{\rm dust} = 45K$ and $\beta = 1.5$)

 $- M_{dust} = 7 \times 10^8 M_{\odot} \text{ (adopting } \kappa_{230} = 7.5 \, \mathrm{cm}^2 \, \mathrm{g}^{-1} \text{)}$

 $-\dot{M}_{\rm SF} \approx 2000 \, M_{\odot} \, {\rm yr}^{-1} \Rightarrow$ Large Reservoirs of molecular gas are needed!

Some Constraints on the Dust Formation

- Time available to form dust at z = 6.42
 - If epoch of early reionization is at $z \approx 17$ (WMAP results), z = 6.42 corresponds to $\Delta t \approx 0.7 \,\text{Gyr}$. At a constant formation rate, this implies a *net* dust production rate of $\approx 1 M_{\odot} \,\text{yr}^{-1}$
- Stellar Dust Factories
 - $-\Delta t \approx 0.7 \,\text{Gyr}$ is too short to produce refractory grains in winds of low-mass ($\leq 8 M_{\odot}$) stars. If product of stellar processes, dust condensation in type II SNRs, and perhaps in winds of high-mass ($\geq 40 M_{\odot}$) which are thought to have dominated the early phase of star formation (e.g., Bromm & Loeb 2003).
- Consequences on the dust properties
 - If above is true, dust composition must then be composed of silicates and perhaps oxides If production in the winds of high-mass stars is important, carbon dust might have been formed as well
 - Consequences on the dust properties (mass absorption coefficient): extinction curve, mass absorption coefficient etc...

Dust & CO in BR 1202–0725 at z = 4.7

Bertoldi et al. (2002); Omont et al. (1996)

High z Sources detected in CO - May 2004

Source Name	z	Telescopes	CO Line		1.2 mm Cont.	Ref.
			line	$[Jy \ km \ s^{-1}]$	[mJy]	
IRAS 10214+4724	2 28	12-m [·] 30-m	3→2	4 1+0 9	96+14	[1 2]
Cloverleaf	2.56	PdB: 30-m	$3 \rightarrow 2$	99+06	18+2	[3]
BR 1202-0725	4 69		5→4	24+03	12.6+2.3	[4 5]
BRI 1335–0417	4.41	PdB	5→4	2.8 ± 0.3	10.3 ± 1.0	[6]
53W002	2.39	OVRO: PdB	3→2	1.20 ± 0.15	1.7 ± 0.4	[7.8]
MG 0414+0534	2.64	PdB	3→2	2.6±0.4	$40\pm2^{\dagger}$	[9]
SMM J02399-0136	2.80	OVRO; PdB	3→2	3.1±0.4	7.0±1.2	[10,11]
APM 08279+5255	3.91	PdB; 30-m	4→3	3.7±0.5	$17.0 {\pm} 0.5$	[12]
BRI 0952-0115	4.43	PdB	5→4	$0.91{\pm}0.11$	2.8±0.6	[13]
Q1230+1627B	2.74	PdB	3→2	$0.80{\pm}0.26$	2.7±0.6	[13]
SMM J14011+0252	2.57	OVRO	3→2	2.4±0.3	≈ 3	[14]
4C60.07	3.79	PdB	4→3	$2.50{\pm}0.43$	4.5±1.2	[15]
6C1909+722	3.53	PdB	4→3	$1.62{\pm}0.30$	< 3	[15]
HR 10	1.44	PdB	$5 \rightarrow 4$	$1.35{\pm}0.20$	4.9±0.8	[16]
MG 0751+2716	3.20	PdB	4→3	$5.96{\pm}0.45$	6.7±1.3	[17]
PSS 2322+1944	4.12	PdB	4→3	$4.21 {\pm} 0.40$	9.6±0.5	[18]
B3 J2330+3927	3.09	PdB	4→3	$1.3 {\pm} 0.3$	4.2±0.6	[19]
TN J0121+1320	3.52	PdB	4→3	$1.2{\pm}0.4$		[20]
J 1409+5628	2.56	PdB	3→2	$3.28 {\pm} 0.36$	$10.7 {\pm} 0.6$	[21]
J 1148+5251	6.42	VLA & PdB	3→2	$0.18{\pm}0.04$	$5\pm$ 0.6	[22,23]
SMM J04431+0201	2.51	PdB	3→2	$1.4{\pm}0.2$	$1.1{\pm}0.3$	[24]
SMM J09431+4700	3.34	PdB	4→3	$1.1{\pm}0.1$	2.3±0.4	[24]
SMM J16358+4057	2.38	PdB	3→2	2.3 ± 1.2	$2.6 {\pm} 0.2$	[24]
cB58	2.73	PdB	3→2	$0.37 {\pm} 0.08$	$1.06{\pm}0.35$	[25]

References – [1] Brown & van den Bout (1992); [2] Solomon et al. (1992); [3] Barvainis et al. (1994); [4] Omont et al. (1996a); [5] Ohta et al. (1996); [6] Guilloteau et al. (1997); [7] Scoville et al. (1997); [8] Alloin et al. (2000); [9] Barvainis et al. (1998); [10] Frayer et al. 1998); [11] Genzel et al. (2002); [12] Downes et al. (1999); [13] Guilloteau et al. (1999); [14] Frayer et al. (1999); [15] Papadopoulos et al. (2000); Andreani et al. (2000); [17] Barvainis, Alloin & Bremer (2002); [18] Cox et al. (2002); [19] de Breuck et al (2003a); [20] de Breuck et al. (2003b); [21] Beelen et al. (2003); [22] Walter et al. (2003); [23] Bertoldi et al. (2003a, b); [24] Neri et al. (2003); [25] Baker et al. (2003).

Sources in blue are known to be lensed [†] Non-thermal emission

Disk of Star Formation in PSS2322+1944 at z = 4.12

Right Ascension (J2000.0)

Cox et al. (2002); Carilli et al. (2003)

CO Excitation in PSS2322+1944

- CO excitation in PSS 2322+1944 (filled circles), compared to
 - BRI 1202–0725 at z = 4.7(filled squares)
 - BRI 1335–0417 at z = 4.4(open squares)
 - Milky Way from COBE (solid triangles)
 - Starburst M 82 (open circles)
- LVG model for PSS 2322+1944

$$- \mathbf{T}_{kin} = 47 \mathbf{K}$$

 $- \mathbf{n}(\mathbf{H}_2) = 5 \times 10^3 \ \mathbf{cm}^{-3}$

Carilli, Cox et al. (2002)

Properties of PSS2322+1944

- $\bullet~2~kpc$ Radius inclined disk with $115\,km\,s^{-1}\,kpc^{-1}$
- Mass is $\sim 3 \times 10^{10} \, \sin^{-2} i \, M_{\odot}$
- Lensing Galaxy at $z\approx 1$
- AGN between inner and outer caustic

Carilli et al. (2003)

Molecular Gas in J1148+5251 (z = 6.42)

13

Walter et al. (2003) Nature 424, 406; Bertoldi et al. (2003) A&A 409, L47

Properties of the CO lines in J1148+5251

Line	ν_{rest}	$\nu_{\rm obs}$	$z_{ m CO}$	peak int.	$\Delta v_{\rm FWHM}$	I _{CO}	$L'_{\rm CO}$	$L_{\rm CO}$
	[GHz]			[mJy]	$[\mathrm{kms^{-1}}]$	$[Jy \text{ km s}^{-1}]$	$[10^{10}{\rm Kkms^{-1}pc^2}]$	$[10^8 L_{\odot}]$
	000 051	100 700	6 4100 0 0000	0.14		0.64 0.00	1 79 1 0 04	0.00 + 0.40
CO (7→6)	800.051	108.729	6.4192 ± 0.0009	2.14	258±09	0.04 ± 0.09	1.73 ± 0.24	2.92 ± 0.40
CO (6→5)	691.473	93.204	$6.4187{\pm}0.0006$	2.45	262 ± 63	$0.73 {\pm} 0.07$	2.69 ± 0.24	2.86 ± 0.25
CO (3→2) [†]	345.795	46.610	$6.419{\pm}0.004$	0.6	320 [†]	$0.18{\pm}0.04$	2.68 ± 0.27	0.35 ± 0.04
CO (1→0)	115.271	15.537	-	< 0.36	-	$< 0.11^{\ddagger}$	$< 14.2^{\ddagger}$	$< 0.07^{\ddagger}$

NOTE. – For J1148+5251, the apparent CO line luminosity (see Solomon et al. 1997) is given by $L'_{\rm CO} = 3.2 \times 10^4 I_{\rm CO} \nu_{\rm obs}^{-2}$, the intrinsic line luminosity $L_{\rm CO} = 4.2 \times 10^6 I_{\rm CO} \nu_{\rm obs}$, in the units given above. All upper limits correspond to 3σ . [†] From Walter et al. (2003) – the line width corresponds to the 50 MHz channel width of the VLA 46.6 GHz observations; [‡] 3σ upper limit, adopting a line width of $260 \,\mathrm{km \, s^{-1}}$.

Bertoldi et al. (2003)

CO Excitation in J1148+5251

- CO excitation in J1148+5251 (filled circles), compared to NGC 253 (dashed)
- LVG model for J1148+5251 (with different $au_{
 m CO}$)
 - $T_{kin} = 100 \ K$
 - $-n(H_2) = 7 \times 10^4 \text{ cm}^{-3}$
- $M_{\rm H_2} \approx 2 \times 10^{10} \, M_{\odot}$
- $M_{\rm dyn} \approx 3 \times 10^9 \sin^{-2}(i) M_{\odot}$
- $M_{\rm BH} \approx (1-5) \times 10^9 \,\mathrm{M_{\odot}}$
- $M_{\rm Bulge} \approx (0.5 2.5) \times 10^{12} \,{\rm M}_{\odot}$

Bertoldi et al. (2003); Walter et al. (2003)

Molecular Gas in J1148+5251: RESOLVED

- CO(3-2) emission as seen at 0.15" resolution seen with the VLA. Two sources separated by 0.3" or 1.8 kpc at z = 6.4
- Crosses show QSO position using SDSS and Keck astrometry
- \bullet Consistent within $0.1^{\prime\prime}$
- QSO associated with northern source: Merger?
- QSO between two CO sources
- Similar to BR1202?

CONT: 11483+52 IPOL 46597.000 MHZ 1148-ALLB.SQASH.2 52 51 50.7 50.6 50.5 **DECLINATION (J2000)** 50.4 50.3 50.2 50.1 50.0 11 48 16.68 16.66 16.65 16.64 16.63 16.62 16.61 16.60 16.67 **RIGHT ASCENSION (J2000)** Cont peak flux = 2.1664E-04 JY/BEAM Levs = 9.000E-05 * (-2, -1.40, -1, 1, 1.400, 2, 2.800. 4. 5.700. 8)

PLot file version 17 created 04-FEB-2004 15:46:36

Relation between L_{FIR} and $L'_{CO(1\rightarrow 0)}$: SFE

Uncovering the z distribution of Submm Galaxies

Chapman et al. (2003)

Properties of the Submm Galaxies

Name	Line	z	$I_{\rm CO}$	Δv_{FWHM}	$M_{ m H_2}$
			$[Jy km s^{-1}]$	$[km \; s^{-1}]$	$[10^{10} M_{\odot}]$
SMM J04431+0210 SMM J09431+4700 SMM J16358+4057	$\begin{array}{c} \text{CO} (3 \rightarrow 2) \\ \text{CO} (4 \rightarrow 3) \\ \text{CO} (3 \rightarrow 2) \end{array}$	$2.5094 \pm .0002$ $3.3460 \pm .0001$ $2.3853 \pm .0014$	1.4 ± 0.3 1.1 ± 0.2 2.3 ± 0.4	350 ± 60 420 ± 50 630 ± 110	1.0 2.7

- The CO line observations confirm the rest-frame UV/optical redshifts from Chapman et al. (2003)
- More than double the number of confirmed redshifts of the faint submm population thus **proving their high-***z* **nature**
- The gas masses are large $(3 \times 10^{10} M_{\odot})$
- In two cases, part of interacting systems
- The submm-population consists of gas rich and massive, composite starburst/AGN systems, which are going a major burst of star formation and are evolving into m^{*}-galaxies
- SO FAR 10 DETECTED OUT OF 13

Neri et al. (2003); Greve et al. (2004)

Submm/Far-IR Bright Galaxies: a Timeline

• 1984: IRAS

- Similar far-IR and optical luminosities for most local galaxies
- Some galaxies are MUCH more luminous in far-IR

• Mid-1990's

- ${\bf ISO}$ extended limits of knowledge in mid/far-IR to $z\sim 1$
- Pointed submm/mm detections of some high-z QSOs/radio galaxies
- First CO detections in high- $z~(z\sim2.5)$ IRAS galaxies

• 1995-2004

- First sensitive 2D camera find previously unknown high-z galaxies at 1.3 and 0.85 mm (SCUBA & Mambo I/II)
- Further detections of CO in high-z galaxies and quasars, mostly with \mathbf{PdBI}
- Detection of the Infrared Background Emission (COBE)
- WMAP Results
- Keck LRIS-B redshifts for significant numbers ($>70)~z\sim2.5$ submm galaxies and follow-up CO observations at PdBI
- SPITZER
 - * Will map large ($\sim 100 {\rm deg^2})$ fields far deeper than ISO's $< 1 {\rm deg^2}$
 - $\ast\,$ Yield accurate SEDs for the most luminous dusty galaxies to $z\approx 2$
- Future: Near & Far
 - From space: Herschel & Planck; JWST
 - Large aperture far-IR space telescope; IR/submm space interferometer
 - * APEX, PdB⁺ & CARMA
 - * ALMA will resolve images of faint high-z galaxies
 - * ELT & OWL: first stars?
 - $* \mathbf{SKA}$ surveys

ALMA in 2012 - an Artist's View

The High-z Universe & ALMA

- \bullet Deep field surveys in the mm/submm continuum: high sensitivity, ${\bf NO}\ {\bf CONFUSION}$
 - Identification of high-z objects, i.e. $\Rightarrow z \approx 20$, i.e. Reionization
 - Images of gravitational lenses
 - Kinematics: estimates of dynamical masses
- Spectra between 85 & 720 GHz
 - Redshift estimate (z)
 - Search for proto-galaxies in molecular gas (CO)
 - Search of species other than CO, e.g., HCN, CN, HCO⁺, isotopes, [CII], etc.....
 - Physics & Chemistry
- Cosmic Background
- Unexpected Results
- A NEW ERA IN COSMOLOGY

The history of the Universe

Radio to Far-infrared Relation

Yun, Reddy & Condon (2001); Beelen et al. (2004)