

SKA and the Magnetic Universe

Rainer Beck MPIFR Bonn Bryan Gaensler CFA Cambridge Luigina Feretti CNR / INAF Bologna

SKA Concepts

SKA Key Science

- Testing Theories of Gravitation with pulsars

- The Dark Ages : Epoch of re-ionisation, first black holes
- The Cradle of Life : Protoplanets, biomolecules, SETI
- Evolution & Large-scale Structure : Galaxies, Hubble Flow & Dark Energy

- Cosmic Magnetism

Cosmic Magnetism

Magnetism is crucial in :

- cloud collapse / star formation
- stellar activity / stellar outflows
- ISM turbulence / gas motions
- supernova remnants
- stability of galactic disks
- acceleration / propagation / confinement of cosmic rays
- heating in galaxy clusters
- AGNs / Jets

Proplyd in Orion

MHD turbulence

SN 1006

Merger in gal. cluster

Magnetism is one of the fundamental forces in Nature, but its role and origin is largely unknown !

Fundamental Questions

STRUCTURE

- What are the strength and structure of the magnetic field in the interstellar, intracluster and intergalactic medium ?
- What is the interplay between the magnetic fields and the gas ?

· EVOLUTION

- How were the present-day magnetic fields amplified and maintained ?
- How did magnetic fields evolve as galaxies evolve ?

• ORIGIN

- Were the seed fields in galaxies and clusters primordial, or were they ejected by stars, supernova remnants, or AGNs ?
- Is there a connection between field formation and structure formation in the Early Universe ?
- When and how were the first magnetic fields generated ?

PSR B1154-62 (Gaensler et al 1998) HVC 132+23-212 (Kazès 1991)

Synchrotron Emission from the Milky Way (Perseus - Auriga)

Polarization opens a new domain to study magnetic fields !

PolaFized emission Effelsberg 21cm (Reich et al 2003)

 $l=150^{\circ}$

COMA Cluster

RMs of Background Sources

- Useful probe of B in the Milky Way, clusters, Ly-α absorbers, ...
- Now: RMs of ~1200 polarized extragalactic sources + ~300 pulsars
- But: Sparse sampling at high |b| : ~0.03 source / deg²
- Galactic plane surveys with ATCA, DRAO: ~2 src / deg²
- New Effelsberg survey (δ > 20°) : ~1500 new RMs, ~0.5 src / deg²

DRAO Canadian Galactic Plane Survey (Brown et al 2003, 2004)

Spiral Arms in the Milky Way

Pulsar RMs + field model (Han et al 2002)

Pulsar + extragalactic RMs (Brown & Gaensler 2004)

Pulsar RMs + wavelet model (Stepanov et al 2002)

Pulsars to be detected with the SKA (Cordes 2001)

RMs Through Galaxies & Clusters

RMs of 21 polarized sources shining through M31 (Han et al 1998)

5 RMs through Abell 514 (Govoni et al 2001)

RMs through 30 clusters (Johnston-Hollitt 2003)

Field Direction in Spiral Galaxies

Krause & Beck (1998)

Galaxies at $z = 0.1 \rightarrow \sim 3$

Radio emission and B vectors of the QSO PKS 1229-021 at z = 1.0 (Kronberg et al 1992)

Field model of the foreground spiral galaxy at z = 0.395 with $B \sim 1-4 \mu G$ (Kronberg et al 1992)

Residual RMs of QSOs embedded in intervening clouds (Welter et al 1984)

Poor data !

SKA All-Sky RM Survey

Image the sky to S ≈ 0.1 µJy at 1.4 GHz ("SKA FIRST")
 FOV ≈ 1 deg², 1h / pointing (~1 year total), ⟨p⟩ ≈ 5% :
 → RMs for ~ (1-5) x 10⁸ polarized extragalactic sources, spaced by only ~ 30"-50" on the sky!

plus: RMs of several 1000 Galactic pulsars and several 100 pulsars in nearby galaxies

Radio sources (total emission) in the ATCA Phoenix Deep Field (Hopkins et al 2003)

When and how were the first magnetic fields generated ?

Seed Fields from Young Galaxies ?

Magnetic Fields in Protogalaxies "SKA Deep Field" :

- thousands of "normal" spiral galaxies at z ~ 3 detectable with the SKA (1.4 GHz : size = 1 - 3", flux ≥ 0.2 µJy)
- their radio flux strongly depends on field strength and on star formation rate (and may be polarized)

Dynamical Importance of Primordial Intergalactic Fields

Primordial Fields

- Early primordial fields could have been generated by battery effects, during inflation or phase transitions
- A primordial intergalactic (IGM) field may have regulated structure formation in the early Universe
- Present-day fields of B ≥ 1 µG could have evolved from B₀ ~ 10⁻⁹-10⁻¹⁰ G primordial seed fields at z > 5 by compression and dynamo action
- Upper limits of intergalactic fields from existing studies: B_{IGM} < 10^{-8...9} G (model dependent)

Search for Primordial Fields

- The SKA All-sky Survey will provide a large sample of RMs
 Expected RMs from a homogeneous IGM field :
 - $\lambda \propto (1+z)^{-2}$; $n_e \propto (1+z)^3$; $B \propto (1+z)^2 \rightarrow RM_{IGM} \propto (1+z)^3$
- But: IGM fields are probably tangled
- Note: The Galactic foreground has to be subtracted properly

Two-point RM correlation function for B = 1 nG (Kolatt 1998)

 $\mathbf{B} = 6 \text{ nG}$ (Blasi et al 1999)

Search for Primordial Fields

RMs of GRB afterglows, high-z AGNs, high-z (radio) galaxies, and of the CMB :
 A CMB field of B₀ ~ 10⁻⁹ G may be detectable as RM_{CMB} (Kosowky & Loeb 1996)

GRB 000131 at z = 4.5(Bloom et al 2001) Radio galaxy at z = 5.2(van Breugel et al 1999) BICEP CMB Polarization

SKA Specifications for Polarimetry

- Frequency: at least 1–10 GHz, 0.3–20 GHz ideal
- Large field of view: >1 deg² at a resolution of <1"
- High sensitivity: < 0.1 μJy, confusion limited
- Large bandwidth: > 400 x 1 MHz at 1.4 GHz
- Significant concentration (> 50%) of antennae in central core (~ 5 km)
- High polarization purity (-40 dB at field center, -30 dB at field edges)

Conclusions

SKA's Magnetic Universe ...

- can address unanswered questions in fundamental physics & astrophysics
- is science which is unique to the radio band and to the SKA
- will almost certainly yield
 new and unanticipated results

