Polarization & Cosmic Magnetic Fields

Rainer Beck, MPIfR

Polarization is an extra dimension in the phase space of observations

Stokes parameters

The projected polarization plane is NOT a vector ! (no direction, only orientation)

Stokes parameters

Astronomy: x points towards the north

Complex (linear) polarization

Stokes vector

The Stokes parameters can be arranged in a Stokes vector:

$$\begin{pmatrix} I \\ Q \\ U \\ U \\ V \end{pmatrix} = \begin{pmatrix} E_{0x}^{2} + E_{0y}^{2} \\ E_{0x}^{2} - E_{0y}^{2} \\ 2E_{0x}E_{0y}cos\varepsilon \\ 2E_{0x}E_{0y}sin\varepsilon \end{pmatrix} = \begin{pmatrix} intensity \\ I \checkmark 0^{\circ} \neq I \checkmark 0^{\circ} \end{pmatrix} \\ I \checkmark 5^{\circ} \neq I \checkmark 35^{\circ} \end{pmatrix}$$

$$Linear polarization: \qquad Q \neq 0, U \neq 0, V = 0 \\ Q = 0, U = 0, V \neq 0 \\ Q = 0, U = 0, V \neq 0 \\ I^{2} = Q^{2} + U^{2} + V^{2} \\ I^{2} > Q^{2} + U^{2} + V^{2} \\ Q = U = V = 0 \end{pmatrix}$$

Mueller matrix

If light is represented by Stokes vectors, optical components are then described with Mueller matrices:

[output light] = [Mueller matrix] [input light]

 $\begin{pmatrix} \mathbf{I'} \\ \mathbf{Q'} \\ \mathbf{U'} \\ \mathbf{U'} \\ \mathbf{V'} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{Q} \\ \mathbf{U} \\ \mathbf{U} \\ \mathbf{V} \end{pmatrix}$

Mueller matrices of polarizers

Tools to study magnetic fields

- Zeeman effect: Strength and sign of ordered B_{||}
- Optical / infrared / submm polarization by dust grains: Structure of ordered B₁
- Total synchrotron intensity: Strength of total B₁
- Polarized synchrotron intensity: Strength and structure of ordered B_⊥
- Faraday rotation: Strength and sign of ordered B_{ll}
- Faraday depolarization: Strength and scale of turbulent fields

Zeeman effect: Field strengths (B_{\parallel}) in Milky Way clouds

Average field strength $\approx 6 \ \mu G$

Optical / IR /submm polarization by dust grains aligned in magnetic fields

Starlight polarization: Ordered fields (B_{\perp})

Large-scale ordered field along the plane

Starlight polarization in M 51

Large-scale spiral field

Submm polarization: Ordered magnetic fields in a molecular gas disk (SMA 870 µm, 0.02 pc resolution)

X-shaped field: Ambipolar diffusion?

Synchrotron emission

Synchrotron emission of a single electron

Critical frequency: $v_c = 3 \gamma^2 e B_{\perp} / (2 m_e c)$

Synchrotron emission

- Ensemble of cosmic-ray electrons:
 Power-law energy spectrum with spectral index ε:
 N(E) dE = N₀ E^{-ε} dE
- Intensity of synchrotron spectrum: $I_v = c_5(\epsilon) \int N_0 B_{\perp}^{(\epsilon+1)/2} (v/2c_1)^{-(\epsilon-1)/2} dL$
- Synchrotron spectral index:
 α = (ε-1)/2
 Strong shocks: ε=2, α=0.5

Energy spectra of cosmic rays

Equipartition (minimum energy) field strengths

Longair, High Energy Astrophysics, 1994

Equipartition strength of the total field

(assuming equipartition between magnetic fields and cosmic rays)

Beck & Krause 2005

$$\mathbf{B}_{eq,\perp} \propto \left(\mathbf{I}_{sync} \left(\mathsf{K}+1 \right) / \mathsf{L} \right) \frac{1}{(3+\alpha)}$$

Isync: Synchrotron intensity

- L: Pathlength through source
- α: Synchrotron spectral index (S $\propto v^{-\alpha}$)
- K: Ratio of cosmic-ray proton/electron number densities n_p/n_e
 Usual assumption: K=100 (no energy losses of CR electrons)

Equipartition field in the Milky Way

(Berkhuijsen, in Wielebinski & Beck 2005)

M 51 20cm VLA Total intensity (Fletcher et al. 2010)

Equipartition field strengths in M 51

Fletcher et al. 2010

Magnetic field strengths in spiral galaxies (from synchrotron intensity, assuming energy equipartition with cosmic rays)

Total field in spiral arms: $20 - 30 \ \mu G$ Regular field in interarm regions: $5 - 15 \ \mu G$ Total field in circum-nuclear rings: $40 - 100 \ \mu G$ Total field in galaxy center filaments: $\approx 1 \ m G$

Magnetic energy density (assuming equipartition with cosmic rays)

Beck 2007

Magnetic energy density is similar to that of turbulence

- ISM is a low-beta plasma
- No modelling without magnetic fields !

NGC 6946 20cm VLA Total intensity (Beck 2007)

Radio synchrotron disk:

Extent is limited by the energy losses of the cosmicray electrons (few GeV)

Linear polarization of synchrotron emission

B-vector: oriented along the magnetic field line (if no Faraday rotation occurs)

Intrinsic degree of linear polarization (if no depolarization occurs): $p_{o} = (\epsilon+1) / (\epsilon+7/3)$

 $= (\alpha + 1) / (\alpha + 5/3)$

Typical value: α =0.9, p_o=74%

Circular polarization: generally negligible

Synchrotron polarization

Beck & Hoernes 1996

NGC 6946 Total and polarized intensity at 6cm

Combination of interferometer and single-dish data

VLA: current configuration (DnC)

DnC configuration						Arm	ID	Station	Distance
Last updated on 09/20/2010					North:	25 22	CN1 / N2 CN2 / N4	54.9 134.9	
							6 28	CN3 / N6 CN4 / N8	266.4 436.4
NOTES:			CN9 (2	0)			8	CN5 / N10 CN6 / N12	640.0 875.1
1. All antennas are now EVLA			CNR (1	e)			10	CN7 / N14	1140.1
2. Preferred Y27 VLB antenna:	N/A (N/A)		CN0 (1	8)			20	CN9 / N18	1754.8
3. Preferred Y1 VLB antenna:	N/A (N/A)		CN7 (1	0)		East:	21	DE1 / E1	39.0
4. Antenna replaced by Pietown:	N/A (N/A)						27	DE2 / E2 DE3 / E3	44.8 89.9
5. Antenna out of service:	CN6 (13)					11 7	DE4 / E4 DE5 / E5	147.3 216.0	
6. WEB: http://www.vla.nrao.edu,	/operators/CurrentPos.ps	CN5 (8)				9 23	DE6 / E6 DE7 / E7	295.4 384.9	
http://www.vla.nrao.edu/operators/CurrentPos.pdf http://www.vla.nrao.edu/operators/CurrentPos.xls							12 3	DE8 / E8 DE9 / E9	484.0 592.4
http://www.vla.nrao.edu,	/operators/CurrentPos.jpg	CN4 (28)			West:	4	DW1 / W1	39.0	
	CN3 (6)					16 N/A	DW2 / W2 DW3 / W3	44.9 89.9	
						19 24	DW4 / W4	147.4	
	CN2 (22)				15	DW6 / W6	295.5		
	CN1 (25)				5	DW7 / W7 DW8 / W8	484.0		
					1	DW9 / W9	592.4		
		DW1 (4) DE1 (21)			Master Pad: Pie Town:	14 29	MAS / MAS VPT / VPT	N/A 174635.3	
		DW2 (16)		DE2 (2)		AAB: Recommissioned:	26 N/A	AAB / AAB N/A / N/A	N/A N/A
		DW3 (N/A)		DE	3 (27)				
	(19) DE4			DE4 ((11)				
					DE5 (7)				
DW6 (15)						DE6 (9)			
DW7 (17)						DE7	(23)		
DW8 (5)		IAT-UTC: 34 seconds			DF8 (12)				
DW/9 (1)		Antennas with Q-band: All Hwhrid I-band: All All except 6 7 9 14 17 20 22 24			DE9 (3)				
5W5 (1)		riyona L-bana.	All except 0, 7, 9, 14, 17, 20, 22, 24					DEJ (3)	
									2

(u,v) coverage of VLA data (M51 3cm D array)

Minimum baseline: $25m \approx 700 \ k\lambda$

Combination of VLA and Effelsberg data (NGC6946 6cm Stokes I)

VLA alone: \approx 50% total flux
Combination of VLA and Effelsberg data (NGC6946 6cm Stokes Q)

Missing large-scale structure: Wrong polarization angle ! (see talk by Wolfgang Reich)

Combination of VLA and Effelsberg data (NGC6946 6cm Stokes U)

Missing large-scale structure: Wrong polarization angle !

Single dish observations are crucial for any synthesis telescope to fill the missing spacings and to obtain accurate polarization angles

Faraday depolarization

Beck 2007

NGC 6946 Polarized intensity at 6cm and 20.5cm

Degree of polarization: $\leq 5\%$ in spiral arms, 20 - 60% in magnetic arms at ≥ 5 GHz, $\leq 10\%$ everywhere at ≤ 1.4 GHz (Faraday depolarization)

Faraday rotation

Faraday rotation

Faraday rotation

$$\Delta \chi = 0.81 \text{ (rad) } \lambda \text{ (m)}^2 \int n_e (\text{cm}^{-3}) B_{\text{reg}} (\mu \text{G}) \text{ dI (pc)}$$

= RM $\lambda \text{ (m)}^2$

Classical measurement of RM: Fitting $\Delta \chi$ as a function of λ^2

Typical Faraday rotation measures

- Intergalactic medium: $\approx 0.01-0.1$ rad m⁻²
- Galactic halos: $\approx 0.1-1$ rad m⁻²
- Galactic disks: $\approx 10-100$ rad m⁻²
- Galaxy clusters: \approx 100-1000 rad m⁻²
- Cooling cores of clusters: \approx 1000-10000 rad m⁻²

Faraday rotation angles

	RM	=	100	10	1	0.1 rad m ⁻²	
1400) MHz	$\Delta \chi =$	263°	26°	3°	0.3°	
200	MHz	Δχ =	12900°	1290°	129°	13°	
120	MHz	$\Delta \chi =$	35800°	3580°	358°	36°	

Spectro-polarimetry in radio continuum

Burn (1966) noted that the observed complex polarized intensity *P* is related to the Faraday spectrum $F(\varphi)$ as:

$$P(\lambda^2) = \int_{-\infty}^{\infty} F(\phi) e^{2i\phi\lambda^2} d\phi \qquad F(\phi) = \frac{1}{\pi} \hat{P}(k), \qquad k = 2\phi$$

Fourier transform ("RM Synthesis") first introduced into multichannel polarization observations by Brentjens & de Bruyn (2005)

(a) Structures in Faraday space (real part)

(b) Observed polarized intensity

(c) RM Synthesis (real and imaginary part) for full coverage in wavelength

(d) RM Synthesis for a limited wavelength coverage (0.6-0.8m)

Differential Faraday rotation (wavelength-dependent)

Fletcher et al. 2004

Maximum polarization

Rotation measure gradient (wavelength-dependent)

Fletcher et al. 2004

Internal Faraday dispersion (wavelength-dependent)

Fletcher et al. 2004

Maximum polarization

Beam depolarization (wavelength-independent)

Fletcher et al. 2004

Depolarization effects

Differential Faraday rotation (wavelength-dep.): $p = p_0 \left[\sin \left(2 \operatorname{RM} \lambda^2 \right) \right] / \left(2 \operatorname{RM} \lambda^2 \right)$ Internal Faraday dispersion (wavelength-dep.): $p = p_0 (1 - \exp(-2 \sigma_{RM}^2 \lambda^4)) / (2 \sigma_{RM}^2 \lambda^4)$ External Faraday dispersion (wavelength-dep.): $p = p_0 \exp(-2 \sigma_{RM}^2 \lambda^4)$ Faraday dispersion: $\sigma_{\rm RM}^2 = (0.81 \, n_{\rm P} \, B_{\rm r})^2 \, L \, d \, f_{\rm v}$ $(B_r \text{ is the turbulent field strength}, d \text{ the size of the turbulent cells})$ Turbulent fields (wavelength-independent): $p = p_{0} / N^{\frac{1}{2}}$ (where *N* is the number of turbulent field cells)

6cm VLA+Effelsberg Total intensity + B-vectors (Fletcher et al. 2010)

Small Faraday rotation:

Spiral fields are roughly parallel to the optical spiral arms

NGC 6946

6cm VLA+Effelsberg Polarized intensity + B-vectors (Beck & Hoernes 1996)

"Magnetic arms":

Ordered fields concentrated in interarm regions

NGC 4736

3cm VLA Polarized intensity + B-vectors (Chyzy & Buta 2007)

> Spiral fields in a ring galaxy

Most spiral galaxies host spiral magnetic field patterns

Fletcher et al. 2004

Regular (coherent) field

Anisotropic (incoherent) field

Polarization :

Faraday rotation :

strong high strong

low

Dynamo theory

"Mean-field" dynamo theory for galactic fields

- Ingredients: Ionized gas + differential rotation + turbulence
- Dynamical separation between large scales and small scales
- Microphysics approximated by the average parameters "alpha-effect" (helicity) and magnetic diffusivity
- Fast reconnection needed to obtain the large-scale field
- Dynamo equation for the large-scale "mean" field
- Solutions: large-scale modes of regular (coherent) fields

Finding dynamo modes: Azimuthal variation of Faraday rotation

Bisymmetric spiral (m=1)

M31: The classical dynamo case

M31 6cm Total Intensity + Magnetic Field (Effelsberg)

Copyright: MPIfR Bonn (R.Beck, E.M.Berkhuijsen & P.Hoernes)

M31: The dynamo IS working !

M31 RM 6/11cm + Magnetic Field (Effelsberg)

Copyright: MPIfB. Bonn (B.Beek, E.M.Berkhuijsen & P.Hoernes)

Berkhuijsen et al. 2003

Fletcher et al. 2004

The spiral field of M31 is coherent and axisymmetric (small spiral pitch angle, but no ring)

NGC 6946

RM 3/6cm VLA+Effelsberg (Beck 2007)

Inward-directed field:

Superposition of two dynamo modes (m=0 + m=2)

NGC6946 RM 3/6cm (VLA+Effelsberg)

NGC 891 3cm Effelsberg Total intensity + B-vectors (Krause 2007)

> Bright radio halo with X-shaped field pattern: quadrupolar dynamo field or driven by a disk wind?

Low-frequency radio observations

Frequency of synchrotron emission: υ ~ E² B
 Obsorving at low frequencies traces cosmic-ray.

- → Observing at low frequencies traces cosmic-ray electrons in weak magnetic fields
- Lifetime of electrons due to synchrotron loss:
 t ~ v^{-0.5} B^{-1.5}
- \rightarrow Observing at low frequencies traces old electrons
- Faraday rotation: Δψ ~ υ⁻² RM
- → Observing at low frequencies allows to measure small rotation measures

LOw Frequency ARray

10-80 MHz 110-240 MHz

Magnetism is key science

© Spektrum der Wissenschaft/Emde-Grafik

International Station Effelsberg

- Frequency range: 1-50 GHz
- New correlator: 5-20x larger continuum sensitivity
- Spectro-polarimetry is now possible

Antennas: 54x 12-m plus 12x 7-m

- Receivers: 84-720 GHz (0.4-3.6mm), mostly with pol
- Construction: 2010-2015

- Construction: 2012-2016
- Site: Cerro Armazones
- Polarimetric facilities still need efforts

SKA: full polarization Magnetism is key science

SKA: RM grid of galaxies (simulation by Bryan Gaensler)

 \approx 10000 polarized sources shining through M31

Observation of magnetism in distant galaxies with the SKA

Murphy 2009

