
A&A 454, L25–L28 (2006)
DOI: 10.1051/0004-6361:20065359
c© ESO 2006

Astronomy
&

Astrophysics

Letter to the Editor

APECS – the Atacama pathfinder experiment control system

D. Muders1, H. Hafok1, F. Wyrowski1, E. Polehampton1,2, A. Belloche1, C. König1, R. Schaaf1,3, F. Schuller1,
J. Hatchell1,4, and F. van der Tak1,5

1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: dmuders@mpifr-bonn.mpg.de

2 Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
3 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
4 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
5 SRON National Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands

Received 4 April 2006 / Accepted 3 May 2006

ABSTRACT

APECS is the distributed control system of the new Atacama Pathfinder EXperiment (APEX) telescope located on the Llano de
Chajnantor at an altitude of 5107 m in the Atacama desert in northern Chile. APECS is based on Atacama Large Millimeter Array
(ALMA) software and employs a modern, object-oriented design using the Common Object Request Broker Architecture (CORBA)
as the middleware. New generic device interfaces simplify adding instruments to the control system. The Python based observer
command scripting language allows using many existing software libraries and facilitates creating more complex observing modes.
A new self-descriptive raw data format (Multi-Beam FITS or MBFITS) has been defined to store the multi-beam, multi-frequency
data. APECS provides an online pipeline for initial calibration, observer feedback and a quick-look display. APECS is being used for
regular science observations in local and remote mode since August 2005.

Key words. telescopes – methods: data analysis – methods: numerical – astronomical data bases: miscellaneous

1. Introduction

Modern radio observatories such as the new APEX1 submillime-
ter telescope (Güsten et al. 2006) need complex control soft-
ware to coordinate the various hardware systems for the de-
sired observations. The individual instrument control comput-
ers and auxiliary devices like synthesisers, etc. are typically dis-
tributed among different locations throughout the observatory so
that network communication is essential. Real-time calculations
are necessary to track the target positions and handle observ-
ing patterns. Monitoring hardware properties and environmental
conditions is important.

Since APEX is an experimental project, it will feature
numerous bolometer cameras and heterodyne array receivers
operating in the atmospheric windows between 150 GHz
and 1.5 THz. These frontends are complemented by a set of dif-
ferent continuum and spectral line backends to analyse the sig-
nals. Frontends and backends can be connected to each other in
many different ways for observing. The APEX control system
(APECS, Muders 2005) therefore needs to be flexible to han-
dle the many different instruments and their combinations and
it must be easily extensible to include new devices. As a con-
sequence of the instrument complexity, the data formats for the
raw and calibrated data must be able to store all setup details.

APECS needs to provide the standard radio observing modes
like pointing, skydip, on-off integrations or on-the-fly mapping.

1 APEX is a collaboration between the Max-Planck-Institut für
Radioastronomie, the European Southern Observatory, and the Onsala
Space Observatory.

Since observations at submillimeter wavelengths are strongly af-
fected by atmospheric absorption, new calibration and observing
modes need to be tried out and the control software must sup-
port testing and implementing them in a simple fashion. Radio
astronomers also often wish to use a scripting language to cre-
ate observing macros. An online pipeline is needed for feedback
concerning the calibrations and for a quicklook display of the
scientific data. Finally, the location of APEX at a very high site
requires remote observing capabilities right from the beginning.

In this letter we describe the design choices for APECS to
fulfill the above requirements and we highlight the most im-
portant parts of the software developments that were made at
the Max-Planck-Institut für Radioastronomie over the course of
several years until now. The software has been iterated using
user feedback that was collected during the commissioning and
early science observing phase of the APEX telescope in 2004.
Overall, APECS now provides a fully featured single-dish tele-
scope observing system that has been used by staff and visiting
astronomers for regular science observations since August 2005.

2. APECS design and implementation

The APECS design phase began with evaluating existing radio
telescope control systems with the aim of re-using as much soft-
ware as possible in order to save manpower. The systems under
consideration were, however, often tightly connected to certain
obsolete hardware choices or difficult to maintain without the
special knowledge of the original developers.

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20065359

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20065359


L26 D. Muders et al.: APECS – the Atacama pathfinder experiment control system

Fig. 1. This diagram illustrates the APECS observing pipeline structure. The astronomer submits a request for a scan – encoded as a so-called Scan
Object – to the Observing Engine which then coordinates all hardware and software tasks to perform the observation. It sets up the instruments,
moves the telescope to the desired position and starts the data recording. The Raw Data Writer collects the data streams and creates an MBFITS
file. After each subscan the Calibrator provides calibrated data and shows results on the online display for user feedback.

Since APEX is a copy of one of the ALMA prototype anten-
nas that were tested at the VLA site in New Mexico, we closely
followed the developments of the initial ALMA control soft-
ware. Although a prototype, it already showed the modern de-
velopment approach using a common network communication
protocol aimed at a flexible and maintainable software. The iden-
tical telescope hardware interfaces of APEX and the ALMA an-
tennas allowed immediate application of the real-time software
which is usually very difficult to develop and test. In addition, the
participation of some of us in the then and current ALMA soft-
ware developments helped to master the initial learning curve
quite fast and allowed for some influence on the software design.

For the above reasons we decided to re-use the emerging
ALMA software. APECS is thus based on the framework of the
so-called ALMA Common Software (ACS, Raffi et al. 2001)
which uses the Common Object Request Broker Architecture
(CORBA, OMG 1999), an industry standard to provide a multi-
language, vendor-independent network communication layer.
ACS delivers the infrastructure for representing hardware de-
vices in software via distributed objects, i.e. software compo-
nents that can be deployed close to the hardware but accessed
in the same manner from anywhere in the control system with-
out having to know the implementation details. In addition, ACS
provides means for automatic monitoring and logging.

APECS also re-uses parts of the ALMA Test Interferometer
Control Software (TICS, Glendenning et al. 2001) which mainly
provides the real-time system for basic antenna control includ-
ing astronomical coordinate system handling and observing pat-
tern elements. TICS being a prototype software, we needed to
improve its stability in some areas for the normal science oper-
ations. This was done in collaboration with some of the ALMA
developers so that the effort was relatively small.

The ACS and TICS packages fulfill the requirements of com-
mon network communication, automatic monitoring, real-time
tracking and remote observing. However, the overarching soft-
ware to use all hardware devices in a coordinated way neces-
sary for astronomical observations was only rudimentarily im-
plemented in TICS because it aimed only at testing the ALMA
prototype antenna performance. It was not suitable for operat-
ing a telescope2. We therefore needed to develop that part of the
software ourselves.

2 For ALMA this functionality is currently under development but
its time scale does not match with the APEX schedule and it will not
support multi-beam array receivers.

We began the development by defining the generic instru-
ment and device interfaces (cf. Sect. 2.1) and the raw data for-
mat interface (cf. Sect. 2.2) since these areas needed to be sta-
ble early on. Subsequently, we developed the observer interface
which provides a scripting language for observing (cf. Sect. 2.3),
the so-called Observing Engine to coordinate all hardware de-
vices and software tasks, the raw data writer (cf. Sect. 2.4) and
the online calibrator pipeline (cf. Sect. 2.5).

These APECS core components are organised as a pipeline
system (see Fig. 1). Observations are defined using so-called
Scan Objects which contain the full description of the next ob-
servation, i.e. the instrument setup details, target coordinate in-
formation and the desired observing patterns. The Scan Objects,
that are created by the observer command line interface, are sent
to the Observing Engine which sets up all necessary devices,
controls the data acquisition and triggers the online data calibra-
tion, reduction and display.

Aside from this main pipeline, we also developed a generic
graphical monitoring tool to view any system property and its
alarm states and an automatic observation logger that simplifies
keeping detailed records of the target, instrument setup and ob-
serving mode used for each scan.

Most of the APECS applications are written in Python
(Rossum & Drake Jr. 2001) which was chosen because a script-
ing language is required for the user interfaces for observing
and offline calibration, and because ACS provides means to ac-
cess the middleware from this language. We also use Python for
the non-interactive processes since its high-level structures al-
low for a very efficient development of the complex bookkeep-
ing needed for instrument and pattern setups. In addition, there
are Python wrappers to many existing compiled libraries to per-
form heavy duty numerical calculations such as the atmospheric
calibration or processing the high raw data rates of up to sev-
eral MB/s. Overall, we believe that these advantages outweigh
possible problems like the dynamic typing.

In the following sections we highlight some details of the
most important pieces of the APECS developments.

2.1. Generic instrument interfaces

One of the most important initial steps in a software development
project is to define the structure of packages and their interfaces.
In a telescope control system there is an additional need for in-
terfaces to all the hardware devices that are being used for the
observations. We therefore began to collect information about
typical setups at other radio observatories to eventually define a



D. Muders et al.: APECS – the Atacama pathfinder experiment control system L27

set of common instrument properties and methods (Muders et al.
2002; Muders 2006).

The important design decision was to require that
instruments of the same kind (e.g. heterodyne receivers, spec-
tral backends, etc.) must all use the same high-level interface.
This simplifies the setup for the high-level observing software
enormously because one merely adds a new instrument name
without having to worry about adding new features at that level.

The implementation of these generic interfaces using the
CORBA middleware requires generic, though quite complex
C++ code. We use a modified version of a code generator orig-
inally developed at the U Bochum (R. Lemke, priv. comm.) to
automatically create these program files.

The hardware side of these instrument interfaces is often
served by very simple computers such as micro-controllers
which are not capable of running the quite large middleware
code directly. Instead, we employ a simple text protocol follow-
ing the SCPI3 standard (Hafok et al. 2006).

2.2. MBFITS raw data format

In addition to the hardware interfaces, one also needs to deter-
mine the data product interfaces early on. There was a lack of
modern single dish raw data data format descriptions when the
APECS developments began. We therefore defined a new data
format called Multi-Beam FITS (MBFITS, Muders et al. 2005)
to store the raw APEX data.

The MBFITS format was derived structurally from the
ALMA Test Interferometer FITS (ALMA-TI FITS, Lucas &
Glendenning 2001) raw data format, although a number of
changes had to be made to accommodate the special needs of
the APEX and also the IRAM 30 m and Effelsberg 100 m tele-
scopes where MBFITS is being used.

The MBFITS format uses the FITS standard (Wells et al.
1981) and the World Coordinate System (Greisen & Calabretta
2002) representation. MBFITS is based on the scan-subscan-
integration scheme used by ALMA-TI fits and retains many of
its keywords. However, due to the changes in structure and addi-
tional keywords needed to accommodate single-dish configura-
tions, particularly multiple beam observing and multiple fron-
tend/backend combinations, the MBFITS format can now be
considered to be an independent format.

For each level of time granularity (scan, subscan, backend
integration) there are FITS binary tables to store the correspond-
ing data. A special monitoring table allows to record important
instrument parameters in parallel to the backend data stream for
later analysis.

2.3. Observer interface

The main observer interface is implemented as a command line
interface (CLI) in a Python interpreter thus fulfilling the user re-
quirement to have scripting with all options of a full program-
ming language. The observing commands have been grouped
according to functionality areas into catalog, target, instrument,
calibration, pattern and switch mode (e.g. wobbling or frequency
switching) setups. We intentionally implemented first a CLI to
facilitate user scripting. The future graphical user interface will
use the existing commands.

In general, the commands are designed to be similar to those
found at other radio observatories. However, the typical setup of

3 Standard Commands for Programmable Instrumentation, SCPI
Consortium, http://www.scpiconsortium.org

frontend-backend chains is simplified due to the use of Python’s
object-oriented features where we represent each instrument by
an object whose methods are used for further setup. This is illus-
trated in the following example script to set up a 15 s on-off
observation of the CO 7−6 line in Orion-KL with a sky ref-
erence 1800′′ to the east using the FLASH 810 GHz receiver
(Heyminck et al. 2006) connected to one of the FFTS spectrom-
eters (Klein et al. 2006) in a configuration with 8192 spectral
channels:

source “orion-kl”
frontends “flash810”
flash810.line “CO(7-6)”
flash810.backends “ffts1”
ffts1 numchan=8192
reference 1800,0

on 15

2.4. Raw Data Writer

The Raw Data Writer must collect the telescope positions, the
backend data and the instrument configuration and write them
to an MBFITS file. This is accomplished by a set of internal
pipelines. Each backend that is selected for a scan is associ-
ated with a Backend Pipeline that receives the backend data,
processes it, and writes it to the corresponding MBFITS binary
tables.

The so-called Monitor Pipeline receives telescope (and in
the future wobbler) position data, passes the data to the back-
end pipelines for interpolation, and also writes it to the file. In
addition, it collects and writes user-defined monitor points from
different devices.

2.5. Data calibrator

The Data Calibrator (Polehampton 2005) provides calibration,
initial reduction, and display of data for both heterodyne and
bolometer receivers. This includes feedback to the observing
system for the basic pointing and focus observing modes. The
reduction proceeds on a subscan-by-subscan basis, retaining en-
tities that are required for further processing (e.g. references,
calibrations).

Heterodyne calibration to the T ∗A temperature scale is carried
out using an extended version of the standard radio astronomy
chopper wheel technique on sky, hot and cold loads. The at-
mospheric calibration is calculated with the ATM model (Pardo
et al. 2001) using the full Planck equation. The final calibrated
spectra are written to disk in the CLASS4 format. Bolometer
data reduction is carried out using libraries of The Bolometer
Data Analysis Project (BoA, Bertoldi et al.).

An offline command line interface based on the Python in-
terpreter is also provided for heterodyne data reduction. It uses
exactly the same methods as for the online system.

3. Deployment

The APECS software is deployed at three main locations:
the telescope itself, the control room at 5107 m altitude5 on
Chajnantor and the control room in the APEX base camp in

4 The Gildas software. http://www.iram.fr/IRAMFR/GILDAS
5 Operating hard disks at such a high altitude is technologically chal-

lenging due to the low air pressure that can lead to head crashes. APECS
uses specially selected SCSI disks.



L28 D. Muders et al.: APECS – the Atacama pathfinder experiment control system

Sequitor near San Pedro de Atacama which is connected to the
mountain via a 32 Mbps microwave link.

Three main servers provide the APECS pipeline system in-
cluding the distributed objects representing the hardware, the
Observing Engine, the Raw Data Writer and the Calibrator. A
number of client stations are used for local or remote obser-
vations from the high site or the base. Remote observing from
the partner institutes in Europe is possible and has already been
used.

One important aspect of the APECS software is the deploy-
ment in simulation mode on a single computer without the need
for any real instrument hardware. This allows to test new devel-
opments in an end-to-end fashion exactly as if performed at the
telescope.

4. Conclusion

APECS is a modern, object-oriented telescope control system
based on the ALMA software framework using CORBA as the
middleware. Its generic interface approach greatly simplifies
adding new instruments. The automatic monitoring of instru-
ment properties facilitates debugging hardware problems. The
user-friendly, Python-based scripting language that is employed
for observations and data calibration allows using many exist-
ing software libraries, thus saving much development time. New
observing modes can be easily added at the scripting level. The
new MBFITS raw data format provides a self-descriptive, self-
contained way of storing all data that are necessary for fur-
ther processing. The online data processing pipeline provides
calibrated spectra and feedback for typical calibration scans.
Overall, APECS is now a mature telescope control system that
can handle existing and planned instruments and their data rates
and has the potential for future extensions.

Acknowledgements. We would like to thank the ALMA software developers
who helped us a lot to understand their software so that we could begin our
own developments within that framework.

References
Bertoldi et al. BoA: The Bolometer Data Analysis Project
http://www.openboa.de

Glendenning, B., Brooks, M., Chiozzi, G., et al. 2001, Test Interferometer
Control Software Design Concept, ALMA Report

Greisen, E. W., & Calabretta, M. R. 2002, A&A, 395, 1061
Güsten, R., Nyman, L.Å., Schilke, P., et al. 2006, A&A, 454, L13
Hafok, H., Muders, D., & Olberg, M. 2006, APEX SCPI Socket Command

Syntax and Backend Data Stream Format, APEX Report APEX-MPI-IFD-
0005, Rev. 1.0

Heyminck, S., Kasemann, C., Güsten, R., de Lange, G., & Graf, U. U. 2006,
A&A, 454, L21

Klein, B., Philipp, S. D., Krämer, I., et al., 2006, A&A, 454, L29
Lucas, R., & Glendenning, B. 2001, ALMA Test Interferometer Raw Data

Format, ALMA Report ALMA-SW-0015
Muders, D. 2005, APECS Observing & Operating Manual, APEX Report

APEX-MPI-MAN-0011
Muders, D. 2006, APEX Instruments Generic CORBA IDL Interfaces, APEX

Report APEX-MPI-IFD-0004, Rev. 1.5
Muders, D., Hatchell, J., Lemke, R., Olberg, M., & Hafok, H. 2002, Software

Interfaces for Submillimeter Telescope Instrumentation, APEX Report
APEX-IFD-MPI-0001

Muders, D., Polehampton, E., & Hatchell, J. 2005, Multi-beam FITS Raw Data
Format, APEX Report APEX-MPI-IFD-0002, Rev. 1.57

The Common Object Request Broker: Architecture and Specifications. Rev. 2.3,
ftp://ftp.omg.org/pub/docs/formal/98-12-01.pdf, Framingham,
MA, USA

Pardo, J. R., Cernicharo, J., & Serabyn 2001, Atmospheric Transmission
at Microwaves (ATM): An Improved Model for Millimeter/Submillimeter
Applications, IEEE Trans. Antennas Propagation, 49, 1683

Polehampton, E. 2005, APEX Calibrator Manual, APEX Report APEX-MPI-
MAN-0012

Raffi, G., Chiozzi, G., & Glendenning, B. 2001, The ALMA Common Software
(ACS) as a basis for a distributed software development, ADASS XI

Rossum, G. V., & Drake Jr., F. L. 2001, Python Reference Manual, Release 2.2
http://www.python.org

Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363


