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Outline
• What are the gravitational waves? 

• Generation  of gravitational waves 

• Detection methods 

• Astrophysical Sources 

• Detected GW Sources
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Principle of Equivalence

• Principle of Equivalence: inertial mass = gravitational mass
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• The trajectory of a particle in gravity does not depend on 
the mass: geometrical nature 

• In a freely falling frame, one cannot feel the gravity. 

• However, the presence of the gravity will cause tidal force. 
Again, this is similar to the difference between flat and 
curved space.

F = mia = mgg

g = �GM
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Curved Spacetime

• General geometry of space-time can be characterized by metric  
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• In the absence of gravity, flat spacetime

• The presence of gravity causes deviation from flat 
spacetime: curved spacetime
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Tidal gravitational forces
• Let the positions of the two nearby particles be x and 
x+𝝌, then the equations of motions are
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• If 𝝌 is small, one can expand 𝚽 
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In GR, similar expression can be derived

• "Geodesic  deviation" equation
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• In the weak field limit, v≪c, |𝝫|≪c2. The only remaining components 
are 𝜇=ν =0. Therefore,

i.e.,

Riemann curvature tensor
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• Ricci tensor can be defined by contraction of Riemann tensor:
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Einstein's Field Equation
• In Newtonian dynamics, the motion of a particle is governed by the 

gravitational potential which can be computed by the Poisson's 
equation:
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i.e., summation over the quantities that describe the geodesic 
deviation (=tidal acceleration tensor).  

• The Ricci tensor is similarly defined with Φ, i.e., summation of all 
tidal components. 

• In vacuum, 
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• In the presence of energy (mass, etc.), Einstein's field equation 
becomes
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Field equation in weak field limit

• In the weak field limit, 
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• Einstein's field equation becomes 

• Perform coordinate transformation,

gµ⌫ = ⌘µ⌫ + hµ⌫ , |hµ⌫ | ⌧ 1

where                                  

flat part small perturbation
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Choice of guage (i.e., coordinates)

• Define a trace-reversed perturbation
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  and impose the Lorentz guage condition

then equation for           becomes 

h̄µ⌫ = hµ⌫ � 1
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Further Properties
• In vacuum (i.e., T𝜇𝜈=0), 
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⇤h̄µ⌫ = 0

• The solution can be written in the form

¯

hµ⌫ = Re{Aµ⌫ exp(ik�x
�
)}

• One can choose a coordinate system by rotating so that 

Aµ
µ = 0 (traceless), A0i = 0 purely spatial

• The wave is transverse in Lorentz gauge. Therefore the metric 
perturbation becomes very simple in transverse-traceless (TT) 
gauge.  Also                     in TT coordinates.h̄µ⌫ = hµ⌫

i.e, equation for plane waves
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Effects of GWs in TT gauge
• In TT guage, GWs traveling along z-direction can be written with only 

two components, h+ and hx: they are called ‘plus’ and ‘cross’ polarizations
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• In these coordinates, the line element becomes
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• The lengths in x- and y- directions for h+ then oscillate in the following 
manner
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Generation of gravitational waves
• The wave equation 

gives formal solution of 

• One can show that  
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Order of magnitude estimates 
of GW amplitude

• Note: the moment of inertia tensor is not exactly the same as 
the quadrupole moment tensor, but in TT guage, it does not 
matter.

• Quadrupole kinetic energy 

¨Ijk ⇠ (mass)⇥(size)2

(transit time)2 ⇠ quadrupole Kinetic E. = ✏Mc2

• In most cases, 𝝐 is small, but it could become ~0.1
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How small is h~10
-21

which was the 
detected amplitude of the GW150914?

14

Simulation created by T. Pyle, Caltech/MIT/LIGO Lab
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Measurement of GWs: 1. Tidal forces
• Equation of geodesic deviation becomes GW tidal acceleration:  
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• Riemann tensor  Rj0k0 is a gravity gradient tensor in Newtonian limit

• Gravity gradiometer can be used as a gravitational wave detector 
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• Tidal force can cause resonant motion of a metallic bar = bar detector

Force field
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Measurement of GWs: 2. Laser 
Interferometer

• Consider a simple Michelson 
interferometer with lx ≈ ly ≈l. 

• The phase difference of returning 
lights reflected by x and y ends 

• Toward the laser:  

• Toward the photo-detector:  

• For small Δ𝜙, 
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Astrophysical sources
• Compact Binary Coalescence (neutron stars 

and black holes) 
• Strong signal, but rare 
• Computable waveforms 

• Continuous (~ single neutron stars) 
• Weak, but could be abundant 
• Deviation from axis-symmetry is not known 

• Burst (supernovae or gamma-ray bursts) 
• GW amplitudes are now well known, not 

frequent 
• Stochastic 

• Superposition of many random sources 
• Could be useful to understand distant 

populations of GW sources or early universe

Black hole binaries

Ijk =

Z
⇢x

j
x

k
d

3
x



Confirmation of GW 
with Binary Pulsar

• Orbit of binary neutron stars shrinks 
slowly 

• Hulse & Taylor received Nobel Prize in 
1993 for the discovery of a binary pulsar Weisberg & Taylor 2005 

P=7.75 hrs 
a=1.6 x 106 km 
M1=1.4 Msun 
M2=1.35 Msun 
Time to merge=3x108 yrs

PSR 1913+16
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About 300 million years after, the following event is expected 
 (Movie credit: Gwanho Park [SNU])
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The final moment of merger of black holes  
(Movie credit: Han-Gil Choe [SNU])
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Comparison of waveforms between NS and BH mergers: 
Note differences in frequencies and shape .

21

Waveform tells many things
Neutron star binary

Black hole binary

high f

low f
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GW from a merging black hole

22



LIGO-G1600341

Principles of GW Detector
Image credit: LIGO/T. Pyle



LIGO-G1600341

 Gravitational Wave 
Detector 1990

K. Thorne, R. Weiss, R. Drever

• 2002-2010  Initial LIGO 
• 2015.9 ~ Advanced LIGO (10times better sensitivity) 
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Simple Estimates of Sensitivity of 
Interferometers

• If the length resolution is 𝛌laser, detectable strain is 

• However, due to quantum nature of the photons, the length resolution 
coud be as small as N -1/2

photons𝛌laser. Thus sentivity could reach

h ⌘ �l

l
=

�laser

l
=

10�6m

103m
= 10�9

• Optical path length can be significantly increased by adopting optical 
cavity, but should be smaller than  GW wavelength (~1000 km for 300 Hz)
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Shot Noise
• Collect photons for a time of the order of the period of GW 

wave

N
photons

=
P
laser

hc/�
laser

⌧ ⇠ P
laser

hc/�
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1

f
GW

⌧ ⇠ 1/fGW

• For 1W laser with λlaser=1 µm, fGW=300Hz,  Nphotons=1016

• By adopting high power laser (20W for O1) and power 
recycling, we can reach ‘astrophysical sensitivity’ of ~10-22.
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LIGO-G1601201-v3

Other Noises
• Radiation pressure noise 

• Make mirrors heavier 
• Suspension thermal noise/ mirror coating 

brownian noise 
• Increase beam size, monolithic 

suspension structure 
• Seismic noise 

• Multi-stage suspension, underground 
• Newtonian Noise 

• So far difficult to avoid.  
• Seismic and wind measurement and 

careful modeling
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GW Events from O1/O2 
• GW150914 

(FAR<6x10-7 yr-1) 

• LVT151012 (Candidate, 
FAR~0.37 yr-1) 

• GW151226 
(FAR<6x10-7 yr-1) 

• GW170104 (<5x10-5 
yr-1

28
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What made these detections 
interesting?

•  LIGO detected gravitational 
waves from merger of black 
hole binaries, instead of 
neutron star binaries 

•  Black hole mass range was 
quite large: GW150914 is 
composed of 36 and 29 
times of the mass of the Sun 

• Most of the known black 
holes are much less 
massive (~10 times of the 
sun)
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What these results tell us? 
(Abbott et al., 2016, ApJL, 828, L22; PHYSICAL REVIEW X 6, 041015 (2016) 

PRL 118, 221101 (2017))

• Proof of the existence of the black holes 

• Existence of stellar mass black holes in binaries 

• Individual masses in wide range (7-35 Msun) 

• Formation of ~60 Msun BH 

• BH appears to be much more frequent than 
previously thought 

• Current estimation of the rate 12-210 yr-1 Gpc-1 
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Summary of the GW sources
• GW150914: 

• First Unambiguous detection of stellar mass black holes and a BH 
binary 

• Accurate measurement of black hole masses (within ~10%) 
• Higher mass of stellar mass BH than previously thought: low 

metallicity environment? 
• GW151226: 

• Lower masses than GW150914, similar to the X-ray binary BH 
mass 

• Lower mass progenitor or high metallicity environment? 
• GW170104 

• High mass (~50 Msun) 
• Spin may not be aligned 

• Origin 
• Isolated or dynamical?

31
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