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Stellar Systems

e Star clusters (open, globular), galactic
nuclei, galaxies, clusters of galaxies

* Self-gravitating
e Composed of mostly point masses
e Weak field (i.e., Newtonian dynamics)

* Question: What is the fate of the self-
gravitating system of point masses
interacting according to Newton’s laws?
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Basic Parameters

e Globular Clusters
N~10°, D~70pc, age~10 Gyr (~age of the universe)

e Open Clusters
N~103, D~20pc, age~300 Myr

e Galactic Nucleus
N~108, D~200pc, age~10 Gyr (~age of the universe)

e (Clusters of Galaxies
N~10°, D~70pc, age~10 Gyr (~age of the universe)
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Strong versus Weak
Encounters

» Strong encounters lead to large changes in
velocity while weak encounters change velocity
by only small amounts

* Av ~ v for strong encounters
* Av << v for weak encounters

*One strong encounters changes the orbit
significantly .

*Weak encounters change the orbit slowly:
accumulated effects are important
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Strong Encounter Time Scale

e Condition:

Gm* 1 2Gm

> §mv — 7 . 1rs . Encounter Radius

r V2

e Cross section: g, = 7r

o

e Time scale:
ts = (nosv)

U3

47 G?m?n

3 —2 —1
~ 4 x 102 Y S e
" <10km/s> <M@> <1pc3 "

¢ Strong encounters could be quite frequent for n>1 03 pcs.
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Weak Encounters

 Encounters with 6>> r; would perturb the orbits

Distance Vi

< >
—® > Velocity V
: 6 .7
Impact | P Star mass M
parameter b , _--"" Distance d

1, -’
® Star mass m

e Assuming straight line (impulse approximation) for the
orbit of M, force acting on M due to m (t=0 at minimum

distance)
P GMm B GMm
o d2 o b2 1 22
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Velocity Changes

e The perpendicular component of the force
GMmb GMm

a2 d (b2 + Ugt2)3/2
e |ntegration over time from -0 to +o°:

d’UJ_
Av| = —dt = Fdt =
oL /_OO dt M/ - bv

 Since Av. has random direction, direct summation would
cancel out. Instead we sum (integrate) the squared values

b 2
max 2
<A’Ui> = / ( Gm> dN, dN =n x vt X 2wbdb
b

min b/U

81G?m?nt <bmmj )
— In
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Relaxation time

e During relaxation, accumulated change of squared
velocity equals the squared velocity itself.

3
A — bmam/bmin

U
t — ;
relar = g rG2m2n In A
e By comparing with strong encounter time scale, we
obtain

t
trelaaz — lnS

e [or self-gravitating systems,

N GMtot . 2Gm

dma:v — Rcluster ~ 02 y T's = 5

dmam
— A = ¥ ~ 0.5M;o:/m = 0.5N, number of stars
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Comparison with other time
scales

e Dynamical time: time for a star to make a

single trip across the entire system

tdy}'z. ~ E

e If the system 1s 1n virial equilibrium

0.1N

t]-el — 111 \.. fdyf-‘

trel > tgyn 1f N becomes large (> 1000)
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Half-mass relaxation time

* Relaxation time is locally defined.

* More precise derivation of the relaxation time can be
done by taking into account the velocity distribution:

0.340°
trclar = . o0 :1—D velocity dispersion
l G?2m2nin A y &b

e Also half-mass relaxation time is often used as a
characteristic relaxation time for the entire cluster
N1/2T2/2
t.rp = 0.138
rh ml/2G1/2 In A

where N is the total number of stars in the cluster
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Collisional or collisionless

Age of the universe

50 1 1 I I ] 1 1 I I ] I I | 1 ]4\ I I 1 1

e During t<<t,

stellar orbit is 40
determined by the

smooth potential of 30
the system:
collisionless “

e Otherwise, the stellar 50

orbit will deviate from

the original one:

collisional 10
e Many globular

clusters are

I I | I | | I I L | | I | | I I L I I
| - | l | | I l | | — l | I | l | |

. O 1 1 1 L l 1 1 1 | I 1 L 1 1 l 1 1 1 1
considered to be
eional syt Globular Clusters in the loggt 12ars 1
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Consequences of
Relaxation

e Core collapse (~10 t)

* Relaxation acts as a thermal diffusion in a system having gradient of
velocity dispersion

* Heat flow from hot to cold region drives dynamical evolution
e Mass segregation (~ t.e X [low mass/high mass])
e Stars with different mass tend to reach energy equipartition.

* Higher mass stars lose energy to lower mass ones, and thus sink
toward the center

e Evaporation (~20 te )
* Relaxation process tends to produce Maxwellian velocity distribution

o Stars with v> vegc evaporate from the cluster
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Thermodynamic properties of self-
gravitating systems: core collapse

1
e Temperature: kgl = 5m02

e Virial Theorem:

E=K+V =—3NkgT = —(

e Specific heat: OF

= — _3Nkp <0
oT B <

—> When energy is extracted, the system heats up!

GM?
r

Self-gravitating systems are thermodynamically
unstable: gravothermal instability
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Core collapse (or gravothermal

catastrophe)
Based on the integration of Fokker-Planck

* The central density equation

becomes infinite in 100

finite time: 108

gravothermal .

catastrophe. 1000
* In real systems, S 100

infinite density would £

never happen as 10
collisional effects 1
become important 0.1

0.01

0 5 10
log t/t,.,;

14



Dynamical Friction

e Consider the motion of a body of a mass M through a population
of stars of m.

e Position and velocity vectors of two particles: (Xu, Vi), (Xm, Vm)
* Relative position and velocity: (r=xn,-Xy, V=dr/dt)
e Equation of motion of the reduced mass:
mM GMm _
m + M P P2

e Let Avp,and Avy be changes of vi;and vy during the encounter.

e Calculate Avy for an encounter with impact parameter b and
initial velocity at infinity of V.
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Velocity changes of particle
after the encounter

e Decompose Avy into vertical and parallel components,

Avp Avwm
) 7 B 2 /S
AviL = G(M + m) _1 " G2(M +m)?
omVy [ pVE 1T
AV = L+ & >
(M +m) | G?(M +m)?

e Vertical components cancel out, but parallel component
accumulates and M suffers steady deceleration:
dynamical friction
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Collective Effects

e The rate at which M encounters stars that have velocities at
iImpact parameters between b and b+adb:

2mbdb X Vo X f(Vin)d* v

where f(vy) is the phase-space number density of stars with
mass m.

 Net rate of change of vy due to these encounters:

dv M
dat

Um

where

QmVO

meLCC
— VOf(Um)dSVm/O M m

bma:r; V()2

A= G(M + m)
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Integration over all velocities

* The previous equation for dv/dt has the same form for the
calculation of the gravitational force at the position vector vum
that is generated by the mass density

p(var) =4drIn AGm(M +m) f(vm)

 Therefore dv/dt is equivalent to G/va? times mass in vip<vu.

oM m 2 d m
= —167° In AG*m/(M + m) Jo f(vg)vm : VM
dt Vg

e For small vy, (vm) = f(0), and therefore

d 1674
;’2\4 ~ 6; In AG*m(M +m) f(0)vas

e For large vu, the integral converges to definite limit

dVM

dVM

— A7rG*MmnIn AVTM

Um
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General Result and Friction
Time

 For arbitrary vM and Maxwellian velocity distribution for
background stars

ARV ATG?MmnIn A |

dt

f(X
U?w _er( )

 Thus dynamical time scale becomes

tfr@c —

erf(X)

_ vy, X = vM/(\/ia)

trel

 Generally the dynamical evolution is accelerated by the
presence of the dynamical friction
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Evaporation of Stars

* The stars evaporate from cluster when v>ve where ve=-20
IS the escape velocity.

* The mean square of the escape velocity is

50 [ p(z)vid*x B [ p(z)®(z)d*x B V
< v, >= Y — —2 Vi = 4M

where Vis the potential energy, and M is the total mass.
e Since V=-2K = -M<v2>
<Ve2> = 4<Vv2>,
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Tidal Radius

e Size of a cluster is limited by the tidal field of the Galaxy

* In a frame of the cluster which is rotating at speed Q, equation of motion
becomes

Xx=-Vd —-20 xx—Q x (2 x x)
:—V<I>€ff—29><>'c

1
where Depy =P 52 x x|’
e There exist a surface where
Vb, =0 »
. . Ml
o Tidal radius: r; = <2M > Rea
G
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Evaporation Rate

 Suppose the stellar system reaches velocity distribution

f(v) in relaxation time (t»). Then the evaporation rate per
relaxation time becomes

tfr‘h dM o fvio f(?])dg?]
M dt [ f(v)d3v
e If f(v) is a Maxwellian, & =0.0073.

ge:

* For tidally bound systems, escape velocity is reduced
(Takahashi, Lee & Inagaki 1997)

<vi>=4(1-))<0v®>

A~ 2R

4Tt
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Takahashi, Lee & Inagaki 1997
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