
July 27, 2017 
Bonn 

Hyung Mok Lee 
Seoul National University

Dynamics of star clusters 
containing stellar mass black holes:

3. Methods



Hyung Mok LeeIMPRS Blackboard Lecture, July 27, 2017

£ Direct integration of equation of motion (N-body method): 
      - very time consuming ( proportional to N3 )
      - possible for systems with N<105 , whereas sometimes we 

are interested in N> 106 systems
      
£ Statistical methods:  Fokker-Planck equation,  Gas 

dynamical approach, Monte Carlo method:  Fast, but many 
restrictions

       spherical symmetry
       simple velocity dispersion tensor
       more physics other than dynamical relaxation 

£ Both statistical and direct N-body methods can be used in 
a complimentary way

Methods of Modelling of Dynamical 
Evolution
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Direct Integration of 
Equations of Motion

•Newton’s  Equation of Motion  

• N equations of N-1 terms in summation → N(N-1)/2 equations 
• For large N, number of operations increases with N

2
.  

• Furthermore, number of time steps for the meaningful 
evolution ∝N ➔  Number of operations for the completion 
of the study  ∝ N

3
. 

•  Direct integration is difficult and time consuming for N > 10
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N-body Codes
• Many versions exists


• N-body codes implement various techniques to deal with complex situations


• Multiple time steps


• Regularization


• Neighbor schemes


• Special purpose hardwares have been developed


• GRAPE (Gravity Pipe)


• Recent versions take advantages of GPU and parallel computers


• The most popular version N-body6 (more recently N-body7) can be downloaded from S. 
Aarseth’s homepage


https://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm

http://sverre.com/index.php?page=intro


• It is not difficult to run these codes. The most important part is to set up appropriate initial 
conditions and to choose right options.


• Running N-body code requires long computing time, typically a few days to a few months

https://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
http://sverre.com/index.php?page=intro
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Statistical Treatment: Phase 
space distribution function

• For systems with large N, statistical treatment may be 
possible (i.e., like gaseous systems)

• For such cases, we may use ‘phase space distribution 
function’ and compute the evolution of the distribution 
function

  f(x,v)d3xd3v: number of particles in  phase space volume 
(x,v)~(x+d3x, v+d3v) 
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• A conservation equation in phase space 
in the absence of ‘collision’

• It is similar to the continuity equation of 
the fluid:

• The collisions may lead to jump of a 
particle in phase space. If there is no 
collision, the collisional term becomes 
0.: collision less Boltzmann equation

collisional

Boltzmann’s Equation
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Integrals of Motion
• Depending on the geometric shape of the 

potential, there exists a number of conserved 
quantities which depends only on (x,v)

• These are called ‘integrals (or constants)’ of 
motion that isolate the nature of orbits

• The integrals themselves satisfy the 
collisionless Boltzmann’s equation:
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Jeans Theorems
• Jeans Theorem: The distribution function of collisionless 

systems depends on phase space variables only through 
the integrals of motion, i.e., f=f(I1, I2,…) since

• The distribution can evolve over time longer than 
relaxation time --> Fokker-Planck description
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Integrals of Motion for Spherical 
and Axisymmetric Systems

• Spherical system:   Energy (E) and angular 
momentum (J)

•  Spherical system with isotropic velocity:  E

•  Rotating Axisymmetric systems: E, J along 
the axis of rotation (Jz), and I3 (unknown third 
integral).
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Calculation of Collisional 
Term

• The changes in f due to two-body scattering is described 
by the transition probability function Ψ(w,Δw), which is the 
probability that a star with w=(p,q) is scattered to the 
volume space  d(∆6w)  around w+∆w during ∆t.
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Fokker-Planck 
Approximation

• The Fokker-Planck assumes that only small scattering 
dominates the evolution.  In that case, we can expand 𝛹 
up to second order in ∆w.
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More Approximations
• Local approximation: the encounter makes changes only 

in velocity à Δx=0.


• Orbit averaging: since the orbit is nearly conserved with 
small angle encounters, one can compute Δv over one 
single orbit, and then convert it to the rate of change


• Then convert Δv into ΔI’s.


• The resulting equation can be expressed as a diffusion 
equation in integral space:
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• Jeans Theorem may be applied to the collision less systems 
in  steady state.   

• Effects of Stellar Encounters 

•     The collisional effects are assumed to be  due to small 
angle scattering events. Since it takes long time to evolve, 
Jeans theorem can be assumed to hold each time. Then 
we may write 

Fokker-Planck Equation

• Fokker-Planck equation describes the 
evolution of distribution function in time 

• Under small angle encounter assumption, the 
evolution equation becomes a set of diffusion 
equations in integrals of motion

13

f = f(I1, I2, I3, ...t)
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• Distribution function for spherical systems depends on E 
and J, with E=1/2 v2 + Φ(r), J=rvt 

• Let N(E,J): total number of stars within the interval dE 
and dJ 

•  𝛳: angle between r and v. Since

  

Spherical Systems
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Orbit averaged Fokker-Planck equation 
as a diffusion equation in (E,J) space
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• Formally orbit averaged Fokker-Planck equation can be 
written as


where orbit averaged diffusion coefficients can be obtained 
by, for example,


  < �E >
orb

=
2

P (E, J)

Z
ra

rp

< �E >
dr

v
r



Hyung Mok LeeIMPRS Blackboard Lecture, July 27, 2017

£ Physical quantities that remain nearly constant under 
slowly varying potential. 

£ In spherical potential, radial action Q(E,J), in addition to 
J, is an adiabatic invariant.

Adiabatic Invariants
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Fokker-Planck equation in for spherical 
systems with isotropic velocity dispersion
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• Isotropic: velocity dispersions are identical along any directions

• In that case, the distribution function depends only on E.

• Fokker-Planck equation becomes particularly simple
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Auxiliary functions

Poisson’s equation
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£ As the system evolves, the gravitational potential also changes
à integrals (I) may experience additional changes

£ The Fokker-Planck equation assumes that the potential is fixed: 
we need some modification of the simple Fokker-Planck 
equation

£ Self-consistent distribution function and gravitational potential 
must be computed 

 —> utilize the adiabatic invariants as a constraint equation

Fokker-Planck�equation�in�self-
gravitating�systems
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A Procedure to obtain self-consistent 
potential

20



Hyung Mok LeeIMPRS Blackboard Lecture, July 27, 2017

Application of Fokker-Planck equation 
to stellar dynamics

•  Formalism of FP equation was done by plasma 
physicists in 1970s

•  FP equation was introduced to stellar dynamics 
by Kulsrud & Cohn (1978), & Cohn (1979, 1980) 

•  Most of the earlier calculations assume only one 
integral: Energy (E)

21
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Example: Core collapse 
• Self-gravitation systems undergo 

gravothermal catastrophe via 
two-body relaxation

• The central part becomes very 
dense

• Since core collapse takes place 
indefinitely, no evolution is 
possible beyond it.

• The time scale for this is ~10 trh .

• The evolution after the core-
collapse is possible if there is a 
heating source.
• Supernova explosion
• Binary stars

t

22
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Toward more realistic models: 1. 
Multi-mass models

• Clusters are composed of many different populations with 
different individual masses

• Extension to the multi-mass system is straightforward: We 
need to integrate the following F-P equations for a discrete 
mass distribution denoted by index i with mass mi
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Toward more realistic models: 
2. physical processes

• In real clusters, various processes occur in addition 
to gravitational encounters,  e.g., stellar evolution, 
formation/destruction of binaries,  inelastic 
(superelastic) encounters ,  external field (constant 
or time varying)


➔ Modification of FP equation  with source and sink 
terms (Statler, Lee , Ostriker, Goodman….  1986 ~ 
2000)

ALf

E
fHfH

E
fDfD

Et
f

EEEEEE

+−

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
−−

∂

∂
−−

∂

∂
−=

∂

∂

Loss Term Source Term

Usual two-body 
relaxation term 

24



Hyung Mok LeeIMPRS Blackboard Lecture, July 27, 2017

Toward more realistic models: 
3. Velocity Anisotropy and Rotation

• Velocity anisotropy naturally arises during the dynamical evolution, 
mostly radial anisotropy in the outer parts

• Original F-P code was developed for f(E,J) by Cohn and collaborators 
(1978, 1979, but the numerical integration of the anisotropic code was 
poor.

• Substantial improvement was made by Koji Takahashi (1995, 1996) 
and successfully applied to clusters in a series of papers with 
collaborators such as H. M. Lee, Sungsoo Kim, Portgies Zwart, etc. It 
is still actively used by a Korean group.

• Extension to the rotating clusters was initiated by C. Einsel and R. 
Spurzem (Heidelberg) successfully applied to realistic clusters by our 
group at SNU. 

• For rotating clusters, the unknown third integral is ignored
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Application Example: Dynamical 
Friction (Bae & Lee in preparation)

• Dynamical friction depends on mass ratio of two 
components: m2/m1.

• Suppose that the galaxy is composed of two components: 
m2 >> m1. Massive component can be star clusters and 
low mass component may be single stars or dark matter 
particles (no difference as long as m2 >> m1).

• The global evolution of the spherical systems can be well 
studied with Fokker-Planck. N-body simulation requires 
uninhibitedly large number of particles.
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Test of Fokker-Planck 
against N-body

• F-P is known to work very well for initial 
models with flat core (i.e., King models, 
Plummer model, etc.)


• We also applied F-P equation for cuspy initial 
models for  and found good agreement with 
NBODY6

m2/m1=2.
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Convergence Test
• In two-component models, The evolution 

depends on μ=m2/m1. (m2>m1)


• One cannot have arbitrarily large value for μ.


• The evolution, measured by (tcc/tfh→7.1 x 10-3) 
becomes independent of μ for large μ>1000. 
The distinct core develops in short time!

virial radius

μ=10

μ=100

μ=1000

M2/Mtot =0.1
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Evolution of the central density 
and velocity dispersion

solid: lower mass component (stars or dark matter) 
broken: higher mass component (e.g., Cluster) 
dotted: total 
m1/m2=1000
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Evolution of Density Profiles
Half-mass radiusVirial radius
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Implications
• Formation of distinctive 

core composed of massive 
component through the 
core collapse.


• Mass in this central 
concentration typically 
becomes ~ a few 10-4 of the 
total mass and a few 10-3 of 
total mass in m2.


• Note that the mass of the 
SMBH is a few times 10-3 of 
the bulge mass.

Extent of Central Core

Low mass component
High mass component
Total
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List of microphysics
• Mass function and mass segregation


• Primordial Binaries


• Binary formation


• Binary-single interactions


• External tidal field (static or time varying) 


• Stellar Evolution


• Mergers


• Evaporation of stars

32

Subject of the final lecture


