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Lecture 5

= calibration

= Image reconstruction

= self-calibration

= measurement equation
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A multi-element interferometer (say with N antennas) produces N(N-1)/2 unique responses

+

For N=4, 6 baselines

responses are measured:
ri2,ris, ri4, r23, ra4, r34.

VLA  (27%26)/2 = 351
WSRT 91
GMRT 435




UV - plot_RR

geometric quantity

there is nothing to be
done if the model is
correct

unless you do
Geodesy



UV coverage amplitude (colour coded) UV coverage phase (colour coded)

UV - plot amplitude RR
LV - plot phase RR
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antenna based errors introduce phase and amplitude error

(D] ~ ZTTVTcloud

The measured visibility phase on baseline “12” is then: ¢|2 = Q2 + (bl = ¢2 [ I ]

where Q2 is the true source visibility on baselines -2, @) are phase offsets introduced by the
clouds above each telescope.




Pp=@nt+ -
®3 = P23+ P2- Ps3 [2a]
b3 = 31 + P3- Py

Clearly if we add these relations together:

D1y + D3+ D3y = Qo+ + @31 +(Pi - d1) +(d2 - P2)+H(P3-b3)

closure phase = (p|2+(p23 + (-p3|

[2b]

This formulation of adding together the observed visibility phases together of any 3 telescopes is
known as forming a “closure triangle”. [2b] is known as the closure phase for these 3 telescopes.

N.B. the important thing to note is that the closure phase contains information only on the true
visibility of the source itself, i.e. its brightness distribution - ALL other telescope based errors
cancel out (e.g. atmosphere, cable lengths, electronics etc.).




For a given array of N telescopes, there are:

(N-1)(N-2)/2 independent closure phases [3]

e.g. for N=4 there are 3 independent closure relations.




So from the closure relations we have (N-1)(N-2)/N good observables (measurements).

However, there are N telescope unknowns. We can reduce this to (N-1) unknowns if we make
one of the telescopes the “reference antenna” (i.e. set the phase error to zero for this telescope).

Note that the ratio of good observables/unknowns (see eqn[3]) is then just:

(N-2)/N  [4]

So for N=3 we have only 33% of the information we
need.

But for N=27 (the case of the VLA) we have 93% of
the information we need.

==> in general the reliability of Interferometric images
favours large-N telescope arrays (e.g. see SKA,ALMA and
SKA pathfinders) - calibration is more robust and uv-
coverage more complete.




Telescope errors do not only effect the phase of the visibility. The amplitude can also be degraded.

However, phase errors usually dominate (at least at cm wavelengths where attenuation by the
atmosphere is a relatively small effect).

In order to consider how self-calibration can be used to correct for amplitude errors, we must
use a complex formalism:

Vs () = gi(t) g¥(t) Vie(t)  [7]

where Vjjare the measured and true visibilities, and gi(t) g¥(t) are known as the complex gains of
the telescopes i,j

The gains contain corrections to both the amplitude and phase of the visibility:
e.g. gi(t)=ai(t)e'¢i(t)

In this formalism the observed and true Visibility can be written as:

Viebs(t) = ai(t) a(t)e®; ) Ay(t)e @10 [8]

Vifre(t) = Ai(t) e @10 9]




Note that by taking the ratios of eqns such as [7] we arrive at the “closure quantities”. e.g.

V12t () = g1() a9 Vi (9 = a1 Q1 aa(t)e a0 An(e) ¢ #120
V23°%5(t) = ga(t) ga(t) Va3 e(t) = ax(t)e®2 a3(t)e'®3 As(t) e ©230)
Via(0) = g1() a9 Viame(9) = a1 (91 aa(t)e a0 An(e) ¢ ©10

If we consider the phase terms only and implicitly accept time dependance:

V2005 V3005 [V 30bs = gi(® -+ @+ & - byt @) @ei(d)-d3 + @) 5)

=@t ®3-®?13)  [10]

Note that [10] is just the equivalent of our original closure phase presented in eqn[2b]




If we consider only the amplitude terms, we can see that for some combination of observed
visibilities, the amplitude gains will cancel:

V12°05V34°05/(V 305 V400%) = AjpAssaiazazas = AnAsg [11]
AizAxsalazazas  AizAzg

Such ratios are known as “closure amplitudes” and require at least 4 telescopes to be formed.

Like closure phases, closure amplitude is a "good observable", since it is not sensitive to
measurement error. The closure amplitude and closure phase relations can be exploited in the
hybrid mapping algorithm (see earlier slides).

In the early days of hybrid mapping the closure phases and amplitudes were explicitly used to
constrain the hybrid mapping process. In the era of the VLA it was no longer computationally
efficient to calculate all the closure quantities. More sophisticated algorithms were constructed
but they are all roughly equivalent to the original method. Modern algorithms seek to minimise
the difference between the observed data and the predicted data:

S = Zijiqwi | Vi - gig¥ Vil [12]

The Wi reflect the fact that some data are higher weighted than other data (e.g. especially for

VLBI arrays where all the telescopes have different sensitivities).




schematic picture
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off diagonal values ONLY no autocorrelation data

S = Zij Wi | Vie®s - gighi Vi™*]




actually a off diagonal complex matrix
per integration time

Vi(e) = Aj(o) e @10

assume a calibration source of 5 Jy
at phase centre: A; =5 & @;(t) =0

divide all the off diagonal terms
of the matrix

add ones on the diagonal term

solve the matrix with the
Gaussian elimination method
to get diagonal matrix

the complex values on the
diagonal are the complex
gains for the antennas




iInformation on calibrators |.

calibrators
4 absolute amplitude calibrator know

3C147, 3C48, 3C286 (~few percent polarized), 1934-638

There are initiatives to increase the number of absolute amplitude calibrators
phase-calibrator should be a point source !

calibrator data bases

VLA - http://www.aoc.nrao.edu/~gtaylor/csource.html
NVSS - http://www.cv.nrao.edu/nvss/

VLBA - http://www.vlba.nrao.edu/astro/calib/index.shtmi

fring finder - http://www.aoc.nrao.edu/~analysts/viba/ffs.html
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I2(l,m) = FT(I(u,v)) X) L, (I,m)

A, (I,m) primary beam

UV - plot RR

Sidelobes
NB: rear lobes!




UV - plot RR

UV coverage

Fourier Transformation

synthesized beam (dirty beam)




data weighting

using FFT and gridding the data can
use different weighting

natural weighting use
numbers of visibility points per bin

uniform weighting use
only 1 points per bin



weighting

uniform weighting
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good for simple sources , point sources, doubles sources, disks

difficult to do science on the dirty image
deconvolve IP (I,m) with dirty beam to determine model of I (I,m)

IP(1,m) = FT(I(u,v)) R) L, (I, m)

visibilities dirty image sky brightness




Deconvolution:

— uses non-linear techniques effectively interpolate/extrapolate
samples of V(u,v) into unsampled regions of the (u,v) plane

— aims to find a sensible model of /(x,y) compatible with data
— requires a priori assumptions about /(x,y)

CLEAN (Hogbom 1974) is most common algorithm in radio astronomy
— a priori assumption: /(x,y) is a collection of point sources
— variants for computational efficiency, extended structure

deconvolution requires knowledge of beam shape and image noise
properties (usually OK for aperture synthesis)

— atmospheric seeing can modify effective beam shape
— deconvolution process can modify image noise properties




cleaning is chipping the dirty brightness distribution I.

Initialize
 aresidual map to the dirty map
* a CLEAN component list

Identify strongest feature in residual
map as a point source

Add a fraction g (the loop gain) of
this point source to the clean
component list (g ~ 0.05-0.3)

Subtract the fraction g times b(x,y)

c; J2000)
0

DEC offset (arcse:

from residual map
If stopping criteria” not reached, go
back to step 2 (an iteration), or...

Convolve CLEAN component (cc)

list with an estimate of the main
dirty beam lobe (i.e., the “CLEAN
beam”) and add residual map to

|//

make the final “restored” image

* Stopping criteria = N x rms (if noise limited), or I™/N (if dynamic range
limited), where N is some arbitrarily chosen value




CLEAN
I model

.I .I reSIdual




[Wrobel & Walker; Chapter 9, Synthesis Imaging in RADIO ASTRONI.

K = (na A) / (2kg)

A = Area

K,= Boltzmann

n, = efficiency

N = losses in electronics
T.ec = INtegration time [s]
Av = bandwidth [Hz]

. 1 Tsysi Tsysj
Ay = s V 2 Av Ty K K;

or in terms of the SEF Ds defined in Equation 9-5:

1 SEFDi SEF D;
AS” . s 2 AV Tace

SEFD

Alm = l‘ .
T /N (N = 1) A by




e “dynamic range”

ratio of peak brightness to rms noise in a region
void of emission (common in astronomy)

an easy to calculate lower limit to the error in
brightness in a non-empty region

«  “fidelity”

difference between any produced image and the correct image

a convenient measure of how accurately it is possible to make an
image that reproduces the brightness distribution on the sky

need a priori knowledge of correct image to calculate

fidelity image = input model / difference

fidelity is the inverse of the relative error



model

easy brightness distribution modelled by
point sources or Gaussian

complicated brightness distribution , g
modelled by number of Gaussian A
or use wavelet components ——

91766 Sources with min 30.0 mJy max 858424.0 mJy

large fields of view one need the local sky model

In case you use catalogued source from e.g. the NVSS you need
to decrease the flux densities with respect to the phase centre or
in other word careful the interferometer sees the local sky
convolved with the primary beam

0 -50
Galactic longitude wea

to detect a model component on a single baseline assume 6-8 sigma
with respect to the rms of the baseline



self-calibration

self-calibration is an iterative procedure to determine
the complex gains to calibrate the visibilities by iteratively
improving the brightness distribution model on the sky

apply gains
the model is based on the cleaned image

number of clean components

averaged time interval

to determine gain solutions
phase use minimum 3 antennas
amplitude use minimum 4 antennas

use dynamic range or rms as criteria to

stop the self-calibration process complex gains

Caution lose absolute phase from calibrators and therefore the position



self-calibration cycles

| complex gains




calibration generations

closure phases and amplitudes

calibration assume antenna
based errors

directional dependent calibration

peeling — subtract all sources except the most strongest one,
self-cal on source, use final model of this source to subtract out
of the database

measurement equation — MeqTree or CASA




directional dependent calibration

Need of a good model of the sources brightness

distribution within the LSM and of the directional all can be written
dependent parameter of the interferometer and as a matrix

the single antennas

N
Vpg = Gp (Z El’kaE:;k] Gj/
k=1

where V,, 1s the 2x2 visibility (also called coherency, or uv-
data) matrix measured by the interferometer formed by stations
p and g. The sum is taken over the contributions X from N dis-
crete sources in the field, at positions /i, my. "

Hamaker et al. 1996



In the 2 x 2 signal domain. the electric field vector E of the incident plane wave can be
represented either in a linear polarisation coordinate frame (x,y) or a circular polarisation
coordinate frame (r,l). Jones matrices are linear operators in the chosen frame:

For linear polarisation coordinates, equation 1 becomes:

e.er
ece,

2 1+ ) st I(l.m) (14)

I
*
eye,

and there is a similar expression for circular polarisation coordinates. Thus, as emphasised in 2],
the Stokes vector I(I m) and the coherency vector ‘u represent the same physical quantity. but in
different abstract coordinate frames. A ‘Stokes matrix’ S is a coordinate transformation matrix
in the 4 x 4 coherency domain: S™ transforms the representation from Stokes coordinates
(I,Q,U,V) to linear polarisation coordinates (xx,xy.yx.yy). Similarly, S* transforms to circular
polarisation coordinates (rr, rl,lIr,Il). Following the convention of [4], we write:*

0 0

Noordam 1996 aips++ Memo 185



in which

Fi(p.ri)
Ti(p,75)
Ki(p.r)
Pi

Ei(p)

D;

J = Gi H. :Yi] Bi KiTiFi = Gi [Hi] [Yi] (Di Ei Pi.) Ki Ti F;

ionospheric Faraday rotation

atmospheric complex gain

factored Fourier Transform kernel

projected receptor orientation(s) w.r.t. the sky

voltage primary beam

position-independent receptor cross-leakage
commutation of IF-channels

hybrid (conversion to circular polarisation coordinates)
electronic complex gain (feed-based contributions only)




The following matrices and vectors play a role in the Measurement Equation:
\vvIQUV Stokes vector of the source (1.QQ.U.V).

\vvCoh, \vvCohEl Coherency vector, and one of its elements.

\mmStokes Stokes matrix, conversion between polarisation representations.
\mmStokes\ssLin Conversion to linear representation.
\mmStokes\ssCir Conversion to circular representation.

\mmMueller Mueller matrix: Stokes to Stokes through optical ‘element’

\mmXifr,\mmXifrEl Correlator matrix (4 x 4).
\mmMifr,\mmMifrEl Multiplicative interferometer-based gain matrix (4 x 4).

\wvAifr, \vvAifrEl Additive interferometer-based gain vector.




The following feed-based Jones matrices (2 x 2) have a well-defined meaning:

J.j \mjJones,\mjJonesEl Jones matrix, and one of its elements.

\mjFrot,\mjFrotEl
\mjTrop,\mjTropEl
\mjProj,\mjProjEl
\mjBtot ,\mjBtotEl
\mjBeam,\mjBeamEl
\mjConf ,\mjConfEl
\mjDrcp,\mjDrcpEl
\mjHybr ,\mjHybrEl
\mjGrec,\mjGrecEl

=0 o n ® oo + ™

F.
T.
P.
B,
E.
C,
D,
H.
G,
K

N \mjKern,\mjKernEl
KY kY \mjKref,\mjKrefEl
LK \mjKoff ,\mjKof £E1
\mjQsum,\mjQsumEl

Faraday rotation (of the plane of linear pol.)
Atmospheric gain (refraction, extinction).
Projected receptor angle(s) w.r.t. x,y frame
Total feed voltage pattern (i.e. B = D EP.
Traditional feed voltage beam.

Feed configuration matrix (...).

Leakage between receptors a and b.

Hybrid network, to convert to circular pol.
feed-based electronic gain.

Fourier Transform Kernel (baseline phase weight)
FT kernel for the fringe-stopping centre.

FT kernel relative to the fringe-stopping centre.
Electronic gain of tied-array feed after summing.

Some special matrices and vectors:

Zero \mmZero
0 \vvZero
U \mmUnit
Diag(a.b) \mjDiag
Mult(a) \mjMult
Rot(a[, 5]) \mjRot
Ellla[, 3]) \mjE11

Zero matrix

Zero vector

Unit matrix

Diagonal matrix with elements a. b
Multiplication with factor a

[pseudo| Rotation over an angle a. 3
Ellipticity angle(s| a. 3




so why do we need that again

going deeper in sensitivity implies that effects

need to be modelled which have been ignored so far
strong sources

far from the phase

centre

28 Sources with min 1021.0 m)Jy max 14903.0 mJy
pointings 300, eff beam 42 [arcmin]
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so why do we need that again |

model of the interferometer needs to be more realistic

primary beam note that the primary beam is frequency dependent
old software packages are not able to model this
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The effect will change e.g. source
flux densities adding a systematic
error if you do surveying




