Principles of Interferometry
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Lecture 4

= 2- element interferometer
= visibilities

= correlator

= uv-coverage

= synthesis imaging




Why Interferometry
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The old 300-foot transit telescope in Green Bank.



* monochromatic

 stationary reference frame

* RF throughout (it should be baseband)

Geometric delay T,

Geometric
Time Delay

T.L,:b-s/c



To illustrate the response, expand the dot product in one dimension:

bes .
=ucosa =usin@ =ul

Here, u = b/A is the baseline length in wavelengths, and 0 is the
angle w.r.t. the plane perpendicular to the baseline.

/=cos a =sin @ is the direction cosine

b
Consider the response R, as a function of angle, for two different
baselines with u = 10,and u = 25 wavelengths:

R, = cos( 207 /)
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[angular perspective] I.




[different perspective] I.

VLA Antenna Locations Skv Sensitivity P




Sky fringe function [different perspective] I.




Geometric

Time Delay
r,=b-s/c \
The path lengths

V E cos(wi) from sensors
L X . to multiplier are

assumed equal!
multiply / I 2
() «— A[cos(wr,)+cos(2ut-a7,)]

average — | —— . -/

Y
Unchangin i '
RC _ PCOS(C()Tg) ging Rapidly varying,

R, = Pcos(wr,) = Pcos(27r %)




* The correlator can be thought of ‘casting’ a cosinusoidal coherence pattern, of
angular scale ~\/b radians, onto the sky.

* The correlator multiplies the source brightness by this coherence pattern,

and integrates (sums) the result over the sky. b

 Orientation set by baseline
geometry.
» Fringe separation set by
(projected) baseline length and j
wavelength. ; Ab rad.
* Long baseline gives close-packed ;
fringes [~ Source
« Short baseline gives widely- / brightness
separated fringes
 Physical location of baseline
unimportant, provided source is in
the far field. '
+ — +

Fringe Sign




e van Cittert—Zernike theorem (spatial)

— spatial autocorrelation of S(x) = FT(brightness)
S(z1) S(2s) = Su)=5(a)

— implementation: aperture synthesis

e Wiener-Kichnine theorem (temporal)

— temporal autocorrelation of S(t) = FT(spectra)
S(t1) S(t2) = X(1)=5(v)

—implementation: F'T' spectrometers
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The response from an extended source is obtained by summing the
responses at each antenna to all the emission over the sky, multiplying
the two, and averaging:

RC=<IIKdﬂlxij2dﬂz>

The averaging and integrals can be interchanged and, providing the
emission is spatially incoherent, we get

R, = HIV (s)cos(2zvb-s/c)dC

This expression links what we want — the source brightness on the
sky, /,(s), — to something we can measure - R, the interferometer
response.




Any real function, I(x,y), can be expressed as the sum of two real
functions which have specific symmetries:

[(xay)ZIE(x:y)+[O(x9y)

[(xay)_l_[(_xs_y)
2

An even part: [, (x,y) = =1, (—x,—y)

An odd part: 1,(x,y)= I(x, )= 1(=x,—y) _

=—1,(—x,—
2 O( y)

lo

The cosine fringe pattern is even, the response R of our interferometer
to an odd brightness -I (-x,-y) distribution is O !!!




We generate the ‘sine’ pattern by inserting a 90 degree phase shift
in one of the signal paths.

r,=b- s/c

V =Ecos[o(t- r)

multiply Plsin(wr g) +sin(2wt — G)Tg)]

average —— (LI

R = Psin(wr,)




The correlator is called complex if it produces Cosine and Sine fringes.

*  We now DEFINE a complex function, the complex visibility, V, from the
two independent (real) correlator outputs R and Rq:

V=R.—iR = Ae™™ phase errors are

where odd features in the images
A=R>+R?
amplitude errors are

b= tan‘l[&] even features in the images

C

This gives us a beautiful and useful relationship between the source
brightness, and the response of an interferometer:

V,(b) = R. —iRs = [[1,(s)e™""*“d

With the right geometry, this is a 2-D Fourier transform, giving us a well
established way to recover /(8) from D).




Real interferometers must accept a range of frequencies. So
we now consider the response of our interferometer over
frequency.

Define the frequency response functions, G(v), as the
amplitude and phase variation of the signal over frequency.

A AV

G

I
Vo

The function G(v) is primarily due to the gain and phase
characteristics of the electronics, but can also contain
propagation path effects.

In principle, G(v) is a complex function.



To find the finite-bandwidth response, we integrate our fundamental
response over a frequency width Av, centered at v

vy +AL/2

1 * —i2not
V= j - j 1(s,0)G,(L)Gs (V)e = dv |dOQ

vy—Av/2

If the source intensity does not vary over the bandwidth, and the
instrumental gain parameters G, and G, are square and identical, then

—21’71'1/0

Sin (ﬂ'ng U) e—2z'ﬂ'v0 rng

v=[]1,)

2dQ=|[ 1 (s)sinc(r.Av)e€
— [[2,(s)sine(r,Av)

where the fringe attenuation function, sinc(x), is defined as:

1.0

! Ml B sin(rx
oo sine(x) = sin(zzx)
'0'27; .7\5. ‘71 : ‘71\7.}1. L .:.\V{/J ;.“.1. | ..; ﬂx




For a square bandpass, the bandwidth attenuation reaches a null when

rgAv—I,or o _AIB _ ¢
Au/u0 BA v

For the old VLA, and its 50 MHz bandwidth, and for the ‘A’ configuration,
the null was ~1.3 degrees away.
For the EVLA, Av =2 MHz,and B = 35 km, then the null occurs at about 27

degrees off the meridian.
The Effect of Finite Bandwidth

Fractional Bandwidth = 1/25 . .
A S / Fringe Attenuation
function:

/ sinc(BAUsin 9} = sinc[BAU sin 9}

v C

Note: The fringe-
\ I attenuation function
A

Fringe Amplitude

depends only on bandwidth
and baseline length — not on

BAv | frequency.
| . | . | . | .

2000 4000 6000 8000

Angle from Phase Center (arbitrary units)

sin @ =




relation LO down conversion (see also last lecture)

* The RF signals are multiplied by a pure sinusoid, at frequency v, 4

* We can add arbitrary phase ¢, 5 on one side.
O
v

|
XX

E cos(mget)

E cos(ot-¢,0)

l |
s

(ORp=O ot O)

2 U OppTy=OpTo=P10)

€

E COS((D”:t_(DRFTg) E COS((DlFt_O‘)”:TO_(I)LO)




The correct phase (RF interferometer) is: @ (Z‘ -7 )
g

The observed phase (with frequency downconversion) is:
a)RFTg o a)/FTO o ¢L0
These will be the same when the LO phase is set to:
B = 0,7,
This is necessary because the delay, t,, has been added in the IF portion

of the signal path, rather than at the frequency at which the delay actually
occurs.

The phase adjustment of the LO compensates for the delay having been
inserted at the IF, rather than at the RF.




adding a time delay needs to be done continuously

S, = reference
(delay)
direction
S = general
direction

b

The entire fringe
pattern has been
shifted over by
angle

sin 0 = cty/b

-

V _Ee—la)(t—f())
;=

V — <I/II/2*> — Eze—i[w(ro—rg)]

E2ei27r[ub-(s—s0)/c]




I. Beam Tracking (Pointing) Center: Where the antennas
are pointing to. (Or, for phased arrays, the phased array
center position).

. Delay Tracking Center: The location for which the
delays are being set for maximum wide-band coherence.

. Phase Tracking Center: The location for which the LO
phase is slipping in order to track the coherence pattern.

* Note: Generally, we make all three the same. #2 and #3 are
the same for an ‘RF’ interferometer. They are separable in a
L O downconversion system.




does not cover the position of the individual telescopes

* This is the coordinate system in most general use for synthesis imaging.

* w points to, and follows the source, u towards the east, and v towards
the north celestial pole. The direction cosines /and m then increase to
the east and north, respectively. ¢

‘Projected
. 2 + 2
Baseline’ V"% ™V

€ u-v plane — always perpendicular
to direction to the source.




describing the vector S in the (I,m,n) system

The unit direction vector s is
defined by its projections (I,m,n)
on the (u,v,w) axes. These
components are called the
Direction Cosines.

[ =cos(ax)

m = cos(f)
n=cos()=~1-1"—m’

u

The angles, a, B, and 0 are between the direction vector

ind the three axes.




What if the interferometer does not measure the coherence function
on a plane, but rather does it through a volume? In this case, we adopt a
different coordinate system. First we write out the full expression:

V. (u,v,w) =”\/

[,(l,m)

1-1°—m’

(Note that this is not a 3-D Fourier Transform).
We orient the w-axis of the coordinate system to point to the region of
interest. The u-axis point east, and the v-axis to the north celestial pole.
We introduce phase tracking, so the fringes are ‘stopped’ for the
direction I=m=0. This means we adjust the phases by ¢
Then, remembering that ;> - 1- /- »° we get:

e—Ziﬂ(ul+Vm+wn)dldm

[V (lj m) p—2iﬂ[ul+vm+w( V1-12—m? -D]
- —m

dldm

V. (u,v,w)= ”\/




antenna position coordinate system [

XYZ — coordinate system for position on the earth
- based on a model for the earth
- essentially your correlator knows all about it
- careful if the position of the telescope is wrong

set the system fixed to the terrestrial system:

X hour angle 0"and declination 0°
Y hour angle -6" and declination 0°

Z declination 90°

The baseline separation (L,, L, L,) to a reference antenna.

cos¢-sin ¥ —sing - cos £ - cos A

= 1. cos F -sin A

sing -sin £+ cos¢ - cos K - cos A

Horizontal coordinate system geographic latitude ¢, elevation E, azimuth A



sin h cosh 0
—sind -cosh sind-sinh  cosd
cosd-cosh —cosd-sinh sind

(sinh - Lx +cosh- Ly)

+(—sind-cosh-Ly +sind-sinh-Ly +cosd - Lyz)

UV coverage




measure a visibility at a specific time towards a source at
declination 6 and right ascension o with respect to the phase
centre

get the UV coordinates for each measurement (need the
antenna position for this)

~2ix [ul+vm+w (N 1= =m* =1)]
€ dldm

2

observational parameters declination right ascension

6 = arcsin(m - cosdy + sindy - /1 — 1?2 — m?)

[
cosdg - V1 — 12 —m? —m-sinég)

| = cosd - sin(a — ag)

a = ag + arctan(

m = sind - cosdy — cosdy - sindy - cos(a — a)




The expression is still not a proper Fourier transform.
We can get a 2-d FT if the third term in the phase factor is sufficient small.

The third term in the phase can be neglected if it is much less than unity:

wh—\/l—lz—mzjz w(l —cos 0) ~ wh> /2 << 1

This condition holds when:
(angles in radians!) 0 <\/L N \/i g
N 2w B o

If this condition is met, then the relation between the Intensity and the
Visibility again becomes a 2-dimensional Fourier transform:

Vi(u,v)=[[1 (I,m)e"™""" dldm




Fourier Transformation

I

synthesized beam

only use uv points and not
the measured values of the
visibility
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