IMPRS - BBL

Numerical methods

Lecture 3

Michael Marks

Topics:

Day 1: Linear algebraic equations
Day 2: Inter- and Extrapolation
Day 3: Integration
Day 4: Random numbers and distribution functions
Day 5: Root finding, Minimization and Maximization
Day 6: Differentiation

Integration

Integration

Integration

Trapezoidal rule

Numerical recipes (Press et al.)

Integration

Trapezoidal rule in C

```
#define FUNC(x) ((*func)(x))
float trapzd(float (*func)(float), float a, float b, int n)
This routine computes the nth stage of refinement of an extended trapezoidal rule. func is input
as a pointer to the function to be integrated between limits a and b}\mathrm{ , also input. When called with
n}=1\mathrm{ , the routine returns the crudest estimate of }\mp@subsup{\int}{a}{b}f(x)dx\mathrm{ . Subsequent calls with }\textrm{n}=2,3,
(in that sequential order) will improve the accuracy by adding 2 n-2 additional interior points.
{
    float x,tnm,sum,del;
    static float s;
    int it,j;
    if (n == 1) {
        return (s=0.5*(b-a)*(FUNC(a)+FUNC(b)));
    } else {
        for (it=1,j=1;j<n-1;j++) it <<= 1;
        tnm=it;
        del=(b-a)/tnm; This is the spacing of the points to be added.
        x=a+0.5*del;
        for (sum=0.0,j=1;j<=it;j++,x+=del) sum += FUNC(x);
        s=0.5*(s+(b-a)*sum/tnm); This replaces s by its refined value.
        return s;
    }
}
```

Numerical recipes (Press et al.)

Integration

Trapezoidal rule

```
#define FUNC(x) ((*func)(x))
float trapzd(float (*func)(float), float a, float b, int n)
This routine computes the nth stage of refinement of an extended trapezoidal rule. func is input
as a pointer to the function to be integrated between limits a and b, also input. When called with
n}=1\mathrm{ , the routine returns the crudest estimate of }\mp@subsup{\int}{a}{b}f(x)dx\mathrm{ . Subsequent calls with n=2,3,_.
(in that sequential order) will improve the accuracy by adding 2 n-2 additional interior points.
{
    float x,tnm,sum,del;
    static float s;
for(j=1;j<=m+1;j++) s=trapzd(func,a,b,j);
            return (s=0.5*(b-a)*(FUNC(a)+FUNC(b)));
        } else {
            for (it=1,j=1;j<n-1;j++) it <<= 1;
            tnm=it;
            del=(b-a)/tnm; This is the spacing of the points to be added.
            x=a+0.5*del;
            for (sum=0.0,j=1;j<=it;j++,x+=del) sum += FUNC(x);
            s=0.5*(s+(b-a)*sum/tnm); This replaces s by its refined value.
            return s;
    }
}
```

Numerical recipes (Press et al.)

Integration

Trapezoidal rule

```
#include <math.h>
#define EPS 1.0e-5
#define JMAX 20
float qtrap(float (*func)(float), float a, float b)
Returns the integral of the function func from a to b. The parameters EPS can be set to the
desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum allowed
number of steps. Integration is performed by the trapezoidal rule.
{
    float trapzd(float (*func)(float), float a, float b, int n);
    void nrerror(char error_text[]);
    int j;
    float s,olds=0.0; Initial value of olds is arbitrary.
    for ( }\textrm{j=1;j<=JMAX;j++) {
        s=trapzd(func,a,b,j);
        if (j > 5) Avoid spurious early convergence.
            if (fabs(s-olds) < EPS*fabs(olds) ||
            (s == 0.0 && olds == 0.0)) return s;
        olds=s;
    }
nrerror("Too many steps in routine qtrap");
return 0.0; Never get here.
}
```


Integration

simpson's rule

Integration

Simpson's rule

```
/* Program int_simps - Numerical integration with Simpsons rule */
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define NSTEP 10
#define PI 3.1415927
#define xa 0
#define xe PI
double func(double x) {
    return(sin(x));
}
int main() {
    int i;
    double xlow,xhigh,area;
    area = 0.0;
    for (i=0;i<NSTEP;i++) {
        xlow = xa+i*(xe-xa)/NSTEP;
        xhigh = xa+(i+1)*(xe-xa)/NSTEP;
        area+= (func(xlow)+4*func((xlow+xhigh)/2.0)+func(xhigh))/3.0;
    }
    area*=(xe-xa)/NSTEP/2.0;
    printf("Value of integral: %lf\n",area);
}
```


Newton-Cotes formulas

Open formulas

Trapezium rule:

$$
\int_{x_{1}}^{x_{2}} f(x) d x=h\left[\frac{1}{2} f_{1}+\frac{1}{2} f_{2}\right]+O\left(h^{3} f^{\prime \prime}\right)
$$

Simpson's 1/3-rule:

$$
\int_{x_{1}}^{x_{3}} f(x) d x=h\left[\frac{1}{3} f_{1}+\frac{4}{3} f_{2}+\frac{1}{3} f_{3}\right] \quad+O\left(h^{5} f^{(4)}\right)
$$

Simpson's 3/8-rule:

$$
\int_{x_{1}}^{x_{4}} f(x) d x=h\left[\frac{3}{8} f_{1}+\frac{9}{8} f_{2}+\frac{9}{8} f_{3}+\frac{3}{8} f_{4}\right]+O\left(h^{5} f^{(4)}\right)
$$

Bode's rule:

$$
\int_{x_{1}}^{x_{5}} f(x) d x=h\left[\frac{14}{45} f_{1}+\frac{64}{45} f_{2}+\frac{24}{45} f_{3}+\frac{64}{45} f_{4}+\frac{14}{45} f_{5}\right] \quad+O\left(h^{7} f^{(6)}\right)
$$

Integration
 Romberg Integration

```
#include <math.h>
#define EPS 1.0e-6
#define JMAX 20
#define JMAXP (JMAX+1)
#define K 5
Here EPS is the fractional accuracy desired, as determined by the extrapolation error estimate;
JMAX limits the total number of steps; K is the number of points used in the extrapolation.
float qromb(float (*func)(float), float a, float b)
Returns the integral of the function func from a to b. Integration is performed by Romberg's
method of order 2K, where, e.g., K=2 is Simpson's rule.
{
    void polint(float xa[], float ya[], int n, float x, float *y, float *dy);
    float trapzd(float (*func)(float), float a, float b, int n);
    void nrerror(char error_text[]);
    float ss,dss;
    float s[JMAXP],h[JMAXP+1]; These store the successive trapezoidal approxi-
    int j; mations and their relative stepsizes.
    h[1]=1.0;
    for (j=1;j<=JMAX;j++) { extrapolated value at desired x (h=0)
        if (j >= K) {
            polint(&h[j-K],&s[j-K],K,0.0,&ss,&dss);
            if (fabs(dss) <= EPS*fabs(ss)) return ss;
        }
        h[j+1]=0.25*h[j];
        This is a key step: The factor is 0.25 even though the stepsize is decreased by only
        0.5. This makes the extrapolation a polynomial in }\mp@subsup{h}{}{2}\mathrm{ as allowed by equation (4.2.1),
        not just a polynomial in }h\mathrm{ .
    }
    nrerror("Too many steps in routine qromb");
    return 0.0; Never get here.
}
```


Excercise

Integrate the following function in the interval $[0 \ldots \pi]$ by using, e.g., the trapezoidal rule.

$$
\sin (x) / x^{\wedge}(3 / 2)
$$

Note the pole of the function at $x=0$. (Result: 2.651469)

Steps:

1) Calculate an analytic expression for $f(x)$ if $x-->0$ and add it to your integration at the end.
2) In order to better sample the strongly changing function values as x-->0 use, e.g., logarithmically increasing stepsizes as you move to larger x (i.e. equidistant steps in log).

Excercise

solution

```
/* Program int_log - Numerical integration in logarithm */
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define NSTEP 10000 for X }->
#define PI 3.1415927
#define xa -10.0
#define xe 0.49714987=|g(\pi)
double func(double x) {
#define NSTEP 10000
    x = pow (10.0,x);
return(sin(x)/x/sqrt (x));
}
    sin}(x)*\mp@subsup{x}{}{-1.5
    = }\mp@subsup{\textrm{X}}{}{*}\mp@subsup{\textrm{X}}{}{-1.5}=\mp@subsup{\textrm{X}}{}{-0.5
    => Integral ( }\mp@subsup{\textrm{X}}{}{-0.5})=2\mp@subsup{x}{}{0.5
int main() {
    int i;
    double xlow,xhigh,area;
    area = 0.0;
    for (i=0;i<NSTEP;i++) {
        xlow = xa+i*(xe-xa)/NSTEP;
        xhigh = xa+(i+1)*(xe-xa)/NSTEP;
        area+= func((xhigh+xlow)/2.0)*(pow (10.0,xhigh) -pow(10.0,xlow));
    }
    area+=sqrt (pow (10.0,xa)) *2.0;
    printf("Value of integral: %le\n",area);
}
```

