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ABSTRACT

High-precision pulsar timing relies on a solar-system ephemeris in order to convert times of arrival
(TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the
conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals;
specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period
and phase associated with the planet’s orbital motion about the Sun. By using an array of pulsars
(PSRs J0437−4715, J1744−1134, J1857+0943, J1909−3744), the masses of the planetary systems from
Mercury to Saturn have been determined. These masses are consistent with the best-known masses
determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2)×10−4 M⊙,
being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft,
and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft
are likely to produce the most accurate measurements for individual solar system bodies, the pulsar
technique is sensitive to planetary system masses and has the potential to provide the most accurate
values of these masses for some planets.
Subject headings: planets and satellites: general — planets and satellites: individual (Jupiter) —

pulsars: general

1. INTRODUCTION

The technique of pulsar timing can provide precise
measurements of the rotational, astrometric, and orbital
parameters of a pulsar by modeling the observed pulse
times of arrival (TOAs). The basic timing analysis pro-
vides a fittable parametric model of delays associated
with variations in the Euclidean distance between the
pulsar and the Earth (resulting from Earth’s orbital mo-
tion, the proper motion of the pulsar, and its binary mo-
tion), dispersive delays in the interstellar medium, and
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general relativistic time dilation of clocks in the observa-
tory and pulsar frames and along the propagation path
(see, e.g., Edwards et al. 2006). The largest variable de-
lay term is the so-called Roemer delay: the modulation
caused by the orbital motion of the Earth relative to the
solar system barycenter (SSB). The amplitude of this de-
lay is up to ∼500 s, while pulse TOAs for many pulsars
are measurable with an uncertainty of much less than
1 µs. This delay is compensated using a numerical solar
system ephemeris (e.g., Standish 1998). However, the so-
lar system ephemerides cannot be perfect and, at some
level, will introduce systematic effects into the timing
process. In addition to their use in pulsar timing, these
ephemerides are used to provide guidance information for
space missions (in fact, this was the original motivation
for their development), and hence there is considerable
interest in improving their accuracy.

The measured TOAs, ti, are related to the rotational
phase, φi, of the pulsar at the time of emission as follows:

φi = νti +
ν̇t2

i

2
+ . . . , (1)

where

ti = ti +
(si + ri ) ·R

c
− ∆i. (2)

Here, ti is the time of pulse emission, si and ri are,
respectively, the vectors from the SSB to the geocenter
and from the geocenter to the observatory at time ti, and
R is a unit vector from the SSB toward the pulsar. ∆i

accounts for numerous other delays not relevant to the
present discussion (see, e.g., Edwards et al. 2006). Equa-
tion (1) expresses the rotational behavior of the pulsar
as a Taylor series, which for most millisecond pulsars re-
ceives significant non-stochastic contributions from only
the two terms shown. Equation (2) relates the times
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of emission and reception, explicitly including the varia-
tions in light-travel time resulting from the motion of the
observatory with respect to the SSB. If the parameters of
the timing model are perfect, then φi is always an integer.
The differences between the observed phase and that pre-
dicted by the timing model are referred to as the “timing
residuals”, usually expressed in time units through divi-
sion by ν. The best-fit timing model is generally that
which minimizes the weighted sum of the squared resid-
uals, where the weights are the reciprocals of the squared
measurement uncertainties in ti.

The most commonly used solar system ephemerides
for pulsar timing are from NASA’s Jet Propulsion Lab-
oratory (JPL). They are constructed by numerical in-
tegration of the equations of motion and adjustment of
the model parameters to fit data from optical astrom-
etry, astrolabe measurements, observations of transits
and occultations of the planets and their rings, radar
ranging of the planets, radio astrometry of the planets
using very long baseline interferometry, radio ranging
and Doppler tracking of spacecraft, and laser ranging
of the Moon (Standish 1998). These observations con-
strain the motion of solar system bodies with respect
to the Earth, however they do not tightly constrain the
planetary masses. This is reflected in the fact that the
planetary/solar mass ratios are normally held fixed in
the fit.

If the vector between the observatory and SSB is not
correctly determined, then systematic timing residuals
will be induced. For instance, if the mass of the Jovian
system is in error, then sinusoidal timing residuals with a
period equal to Jupiter’s orbital period will be induced.
The identification of such residuals therefore provides a
method to limit or detect planetary mass errors in the
solar system ephemeris.

In this letter we use data taken as part of the interna-
tional effort to detect gravitational waves (Manchester
2008; Janssen et al. 2008; Jenet et al. 2009; Hobbs et al.
2010) using an array of pulsars to constrain the masses of
the solar system planetary systems. These data sets are
described in Section 2 and their analysis is discussed in
Section 3. In Section 4 the results are presented and in
Section 5 we discuss the potential of future observations
and the constraints on unknown solar system bodies.

2. DATA SETS

The pulsars used in this analysis (listed in Table 1)
were chosen from the sample observed as part of the In-
ternational Pulsar Timing Array project (Hobbs et al.
2010). The four pulsars were selected based upon the
precision of their measured TOAs, the magnitude of
timing irregularities and on the length of the data set.
The data sets for PSRs J0437−4715, J1744−1134, and
J1909−3744 are those published by Verbiest et al. (2009)
except for a reweighting as described below.

For each observation of a pulsar, typically of 1 hr du-
ration, the data are folded at the rotation period of the
pulsar and summed to produce a single pulse profile of
relatively high signal-to-noise ratio. The TOA for each
profile was obtained by cross-correlating the profile with
a high signal-to-noise ratio template and adjusting the
start time of the observation for the phase offset be-
tween the template and observed profiles. The psrchive
(Hotan et al. 2004) and tempo2 (Hobbs et al. 2006)

TABLE 1
The Data Sets

Name MJD Range Years TOAs Rms Residual (µs)

J0437−4715 50190 – 53819 9.9 2847 0.21
J1744−1134 49729 – 54546 13.2 342 0.64
J1857+0943 46436 – 54507 22.1 592 1.34
J1909−3744 52618 – 54528 5.2 893 0.17

software packages were used to process the data and to
obtain timing solutions.

The data set for PSR J1857+0943 is a combination
of the previously published TOA data from the Arecibo
telescope (Kaspi et al. 1994) in addition to new data from
Arecibo, Parkes, and Effelsberg. This combined data set
is over 22 years long. Even though this data set is nearly
10 years longer than the other data sets in our sample,
accurate TOAs were not obtained for just over 3 years
during the upgrade of the Arecibo telescope. The lack
of useful data means that an arbitrary offset has to be
included between the pre- and post-upgrade data sets.
This arbitrary offset absorbs low-frequency power in the
residuals which reduces the sensitivity of the fit to low-
frequency terms.

The uncertainties for the parameters produced by the
standard weighted least-squares fit implemented into
tempo2 assume that the reduced χ2 of the fit is unity. In
most pulsar data sets the reduced χ2 of the fit is signif-
icantly larger than one. There are a number of possible
reasons for this, including: radio frequency interference
causing subtle shape changes in the profile, variations in
the interstellar propagation path, intrinsic variations in
the pulse profile or the pulsar rotation rate, instrumen-
tal artifacts, errors in the clocks used to timestamp the
data, or gravitational waves. Many of these effects have a
steep-spectrum or “red” character and manifest approxi-
mately as low-order polynomials in the timing residuals.
In order to improve the estimate of the TOA uncertainty
(and therefore the uncertainty of the parameters in the
fit), it is common practice to introduce a multiplier that
is applied to the TOA uncertainties at fitting. This is
usually determined by fitting a polynomial to “whiten”
(i.e., flatten) the residuals and then calculating the mul-
tiplier required to bring the reduced χ2 to unity. Because
of the ad hoc nature of this process and because we are
searching for long-period signals (i.e., signals with peri-
ods similar to the length of our data sets), we use an
improved technique to whiten the data and obtain ac-
curate timing model parameters in the presence of red
noise and with poorly known TOA uncertainties. This
technique is called “Cholesky whitening” and is summa-
rized briefly in Section 3, but will be described more fully
in an upcoming paper.

3. ANALYSIS

The position of the SSB in a Euclidean frame can be
written as a sum over all solar system bodies (including
the Sun), where Mj is the mass of the body and bj the
vector position of the body (where the i subscripts used
in Equations (1) and (2) have been dropped for clarity):

bB =
∑

j

bj

Mj

MT

, (3)
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where MT =
∑

j Mj. An erroneous set of masses M ′
j =

Mj − δj leads to an erroneous estimate of the barycenter
vector

b ′

B − bB ≈ −

∑

j

bj

δj

MT

, (4)

where it has been assumed that δj ≪ Mj and, conse-
quently, that

∑
j M ′

j ≈
∑

j Mj. If we take the origin of
the reference frame to be at the SSB, then bB = 0 and

s ′
− s = −b ′

B ≈

∑

j

bj

δj

MT

. (5)

The error in the model time of emission is then

t′
− t=

(s ′ − s) ·R

c
(6)

≈
1

cM⊙

∑

j

δj(bj ·R), (7)

that is, we approximate the effect of a change in the
mass of a planet as a relocation of the SSB along the
vector from the original SSB to that planet. The tempo2
software package has been modified to include the right
side of Equation (7) as additional terms in the model.
The modified timing model obtains bj from a specified
version of the JPL series of solar system ephemerides
(in this work, DE421, Folkner et al. 2009). The model
parameters δj measure the difference between the best-
fit masses and the values assumed by the chosen solar
system ephemeris. Indices j of 1 – 9 refer to the planets
(and Pluto) in ascending order of mean distance from
the Sun (note that b3 ≡ s). Examples of the induced
timing residuals resulting from an increase in the Jovian
system mass of 5 × 10−10 M⊙ are given in Figure 1 for
PSRs J0437−4715 and J1857+0943 (ignoring any effects
caused by the fitting procedures).

In order to deal with all our data sets, we adapted
tempo2 to fit multiple pulsars simultaneously. Fitting
for the pulsar specific parameters is based solely on the
TOAs of that pulsar, whereas pulsar-independent param-
eters, such as a planetary mass, are fitted globally over
all data sets. This procedure reduces the impact of tim-
ing noise in individual pulsars on the derived values for
the global parameters.

For data sets whose post-fit residuals have a reduced χ2

value close to 1.0, it is possible simply to fit for the plan-
etary system mass. To determine realistic uncertainties
for the TOAs, we selected short sections of data (∼ 30
days long depending upon the sampling) for each pulsar,
observatory, and back-end instrument used. Weighted
fits to each of these short sections of data gave indepen-
dent estimates of the correction factors which were sub-
sequently averaged and applied to the data set for that
combination. This procedure avoided contamination of
the correction factors by non-white noise in the data sets.
In the presence of non-white noise, standard fitting pro-
cedures lead to biased parameter estimates and underes-
timated uncertainties (see, e.g., Verbiest et al. 2008).

The red noise in each data set was modeled fol-
lowing the method outlined by Verbiest et al. (2008).
For PSR J0437−4715 the model developed by Verbiest
et al. (2008) was used, while for PSRs J1744−1134,
J1857+0943, and J1909−3744, the red noise was fitted
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Fig. 1.— Timing residuals for PSRs J1857+0943 and
J0437−4715 using the DE421 ephemeris plotted with the line in-
dicating the timing signature generated by an increase in the mass
of Jupiter of 5 × 10−10 M⊙.

by a power-law function, P ∝ f−α, with exponents of
α = 0.9, 0.7, and 0.55, respectively. These noise models
provide two methods to determine the parameter uncer-
tainties. First, conservative estimates of the parameter
uncertainties were obtained using a Monte-Carlo simu-
lation as described by Verbiest et al. (2008). Second,
we implemented a new technique that both whitens the
residuals and modifies the function being fitted before
obtaining the parameter values and uncertainties using
a Cholesky factorization of the data covariance matrix.
This procedure, known as “Cholesky whitening”, will be
fully described in a forthcoming paper.

To test our analysis technique, a new ephemeris was
created that had identical parameters to the DE421
ephemeris, except for a small decrease in the mass of
Jupiter by 7 × 10−11 M⊙. The effect of this change was
investigated by simulating TOAs that are predicted ex-
actly by a given timing model and the DE421 ephemeris.
These simulated data were then analyzed using tempo2
with the modified ephemeris. The resulting pre-fit resid-
uals show the expected sinusoid at Jupiter’s orbital pe-
riod together with an annual term of about half the am-
plitude of the Jupiter term. Changing the mass of Jupiter
has many secondary effects in the modified ephemeris.
These include a slight variation in the Astronomical Unit
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TABLE 2
Planetary system masses

System Best-Known Mass (M⊙) Ref. This Work (M⊙) δj/σj

Mercury 1.66013(7)×10−7 1 1.6584(17)×10−7 1.02
Venus 2.44783824(4)×10−6 2 2.44783(17)×10−6 0.05
Mars 3.2271560(2)×10−7 3 3.226(2)×10−7 0.58
Jupiter 9.54791898(16)×10−4 4 9.547921(2)×10−4 1.01
Saturn 2.85885670(8)×10−4 5 2.858872(8)×10−4 1.91

References. — (1) Anderson et al. (1987); (2) Konopliv et al. (1999);
(3) Konopliv et al. (2006); (4) Jacobson et al. (2000); (5) Jacobson et al.
(2006).

which leads to the annual sinusoid. This small effect is
likely to be undetectable in real data and in any case
would be absorbed as an offset in the position of the
pulsar by ∼ 0.1 mas. The tempo2 fitting correctly re-
covered the simulated offset in Jupiter’s mass.

4. RESULTS

Using the DE421 ephemeris, we have obtained timing
residuals for the four pulsars listed in Table 1 and fitted
for a mass difference for each of the planetary systems
from Mercury to Saturn. The resulting mass measure-
ments are listed in Table 2, where the 1-σ uncertainties
given in parentheses are in the last quoted digit. All
results from this work are consistent with the best cur-
rent measurements; the number of standard deviations
between the masses derived in this work and the best-
known masses are given in last column.

The mass measurement for Mars was determined with-
out the use of the PSR J0437−4715 data. A spectral
analysis of the data set shows significant power in a broad
feature around the period of the Martian orbit which
could contaminate a fit for the narrow feature that would
indicate an error in the mass of Mars. The simple red-
noise model used to calculate the correct uncertainties
is not detailed enough to account for this feature and so
this data set was not used.

Our current data sets are sensitive to mass differences
of approximately 10−10 M⊙, independent of the planet.
Consequently, our most precise fractional mass determi-
nation is for the Jovian system. We therefore check our
result by comparing the Jovian system mass obtained us-
ing different subsets of our data. In Figure 2, we show the
fitted mass difference compared with the value used for
the DE421 ephemeris, 9.5479191563×10−4 M⊙, for each
pulsar separately and the weighted mean. For compari-
son, we also show the best Jovian system mass from the
Pioneer and Voyager (Campbell & Synnott 1985) and
the Galileo (Jacobson et al. 2000) spacecraft. The results
obtained by fitting to individual pulsar data sets show
a small scatter around the DE421 mass value with no
pulsar showing more than a 2-σ deviation. The weighted
mean deviates from the best-known measurement by only
1.1σ and has considerably smaller uncertainties than the
mass determination derived from Pioneer and Voyager
(Campbell & Synnott 1985).

5. DISCUSSION

While the result presented here for the Jovian system
is more precise than the best measurement derived from
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Fig. 2.— Values and uncertainties for the mass of the Jovian
system from the Pioneer and Voyager (Campbell & Synnott 1985),
and the Galileo (Jacobson et al. 2000) spacecraft , the pulsars
individually, and the array of pulsars.
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the Pioneer and Voyager spacecraft by a factor of ∼4,
the result from the Galileo spacecraft is still better by a
factor of ∼ 20. For a pulsar timing array of 20 pulsars,
regularly sampled every two weeks, with white data sets
and an rms timing residual of 100 ns, the uncertainty of
the mass estimate decreases with increasing data span
such that the mass uncertainty of the Galileo measure-
ment for Jupiter would be reached in ∼ 7 years of ob-
servations; see the solid line in Figure 3. Note that this
curve does not follow a simple power-law function be-
cause of the fitting procedures that are undertaken when
dealing with pulsar data sets. Figure 3 also shows that,
with ∼13years of data, the uncertainty of the current
Cassini measurement for Saturn is reached.

These predictions rely on pulsar data sets remaining
“white” over timescales of a decade or more at very
high levels of timing precision. While this has yet to be
demonstrated, the indications from recent decade-long
data sets (Verbiest et al. 2009) are encouraging.
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Analysis of data from current and future spacecraft will
produce improved measurements of planetary masses.
For example, NASA’s New Frontiers Mission to Jupiter,
Juno, is expected to reach Jupiter in 2016 and orbit it
for more than a year. A major scientific objective of this
mission is to probe Jupiter’s gravitational field in detail,
thereby providing a very precise mass for Jupiter.

While spacecraft measurements are likely to continue
to provide the most precise mass measurements for most
of the planets, at least for the next decade, it should
be noted that the pulsar measurements are indepen-
dent with different assumptions and sources of uncer-
tainty. Independent methods are particularly important
for high-precision measurements where sources of sys-
tematic error may not be well understood. Furthermore,
while spacecraft such as Juno are very sensitive to the
mass of the individual body being orbited, they tell us
very little about the satellite masses of that body. Only
five of the Jovian and nine of the Saturnian satellites
are included in the system mass assumed for DE421 (R.
A. Jacobson, private communication). Since the pulsar
technique is sensitive to the mass of the entire planetary
system, it can provide a measure of the mass undeter-
mined by spacecraft observations.

By combining the pulsar and satellite measurements,
it will be possible to test the inverse-square relation of
gravity and distance for Jupiter masses and distances
between 0.1 and 5 AU. Although no deviations apart
from known general relativistic effects are expected, it is
important to place limits on such effects where possible.

The pulsar timing technique is also sensitive to other
solar system objects such as asteroids and currently un-
known bodies, e.g., trans-Neptunian objects (TNOs).
Measurements of anomalous period derivatives and bi-
nary period derivatives for a number of millisecond pul-
sars have already been used to place limits on the ac-
celeration of the Solar System toward nearby stars or
undetected massive planets (e.g., Zakamska & Tremaine
2005; Verbiest et al. 2008). Pulsar timing array experi-
ments with a wide distribution of pulsars on the sky will
be sensitive to the dipolar spatial dependence resulting
from any error in the solar system ephemeris, includ-
ing currently unknown TNOs. Any ephemeris error will
be distinguishable from the effects of gravitational waves
passing over the Earth as the latter have a quadrupolar
spatial signature. Limits for unknown masses have also
been placed by spacecraft using deviations from their
predicted trajectories. Doppler tracking data from the
two Pioneer spacecraft were searched for accelerations
due to an unknown planet. The anomalous accelera-
tion detected in these data, aP = (8.7 ± 1.3) × 10−10

m s−1 is attributed to non-gravitational sources (Ander-
son et al. 2002) and is not detected in planetary mea-
surements (Folkner 2010).

An exciting possibility for the future is the creation of a
solar system ephemeris that includes pulsar timing data
in the overall fit. Such a fit would be able to determine
the masses of the planetary systems while simultaneously
fitting for orbital parameters.

6. CONCLUSIONS

We have used the four longest and most precise data
sets taken for pulsar timing array projects to constrain
the masses of the solar system planetary systems from
Mercury to Saturn. In all cases, these measurements are
consistent with the best-known measurements. For the
Jovian system, our measurement improves on the Pio-
neer and Voyager spacecraft measurement and is con-
sistent with the mass derived from observations of the
Galileo spacecraft as it orbited the planet between 1995
and 2003. Pulsar timing has the potential to make the
most accurate measurements of planetary system masses
and to detect currently unknown solar system objects
such as TNOs. In the future, pulsar timing data can
be included in the global solutions used to derive solar
system ephemerides, thereby improving their precision.
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