THE BROADBAND SED PROPERTIES OF THE MOJAVE SAMPLE
Collaborators

C. S. Chang*, M. Kadler, M. Böck, L. Barragán, J. Wilms, M.F. Aller, H.D. Aller,
the MOJAVE collaboration,
the F-GAMMA collaboration,
and the **Fermi**/LAT collaboration

* PhD Thesis Work
MOJAVE SEDs

- Radio-selected sample of 135 sources
 - 101 flat-spectrum radio quasars
 - 22 BL Lac objects
 - 8 radio galaxies, 4 unidentified objects
- Continuous monitoring since the mid 1990s
- Simultaneous datasets used, from radio to γ-rays
MOJAVE

The Brightest Radio
Galaxies in the
Northern Sky

http://www.physics.purdue.edu/MOJAVE/
The data

- **Swift** observations
 - X-rays/optical: XRT/UVOT dedicated program, data after Aug 2008 – analysis by C.S. Chang

- **Radio**: F-GAMMA monitoring (Fuhrmann et al., Angelakis et al. 2010)
Polynomial models to each hump

Peak position (frequency and energy) estimated for both humps

$3C\ 111$
Correlations studied

SED:
- $v_{\text{sync, peak}}$
- $v_{F, \text{sync, peak}}$
- $v_{IC, \text{peak}}$
- $v_{F, \text{IC, peak}}$

Radio (VLBI):
- S
- α
- β_{app}
- δ
- Γ^1

X-ray:
- F_v
- L
- Γ^2

γ-ray:
- F_v
- L
- Γ^2

1: Lorentz Factor
2: Photon index
Some examples of correlation...