The parsec scale of active galactic nuclei

Mar Mezcua

International Max Planck Research School for Astronomy and Astrophysics

Max-Planck-Institut für Radioastronomie **COST Action MP0905 - Black Holes in a Violent Universe**

In collaboration with A. Prieto, F. Mueller-Sánchez

IMPRS astrophysic Bonn and Cologn

Instituto de Astrofísica de Canarias, Tenerife (Spain)

Introduction

1. Introduction

- Active Galactic Nuclei (AGN)
 - Seyfert-Quasars $\rightarrow L_{optical} \approx 10^{44-47} \text{ erg/s}$
 - Broad Line Region (BLR)

Size \approx (0.1-1) pc ; FWHM \approx 3000 km/s

- Torus $\approx 10 \text{ pc}$
- Narrow Line Region (NLR)

Size $\approx 100 \text{ pc} - 4 \text{ kpc}$; FWHM $\approx 500 \text{ km/s}$

- Coronal Line Region (CLR)

Near-IR spectroscopy studies

High-ionization emission lines (IP > 100 eV) (e.g. [SiVI] 1.96 μm)

No star formation contribution, only associated to AGN

FWHM \approx 400-1000 km/s ; size \approx 30-200 pc

Produced by hard UV- soft Xrays photons or fast shocks

Strong implication to AGN feedback

via outflows of ionized gas

Regulate SF, BH growth

Max-Planck-Institute for Radio Astronomy

• Low-Ionization Nuclear Emission Regions (LINERs)

Lowest-luminosity AGN \rightarrow L_{optical} $\approx 10^{42}$ erg/s

Represent 60% of AGN population in nearby Universe

Intrinsic low luminosity debated:

- Lack of fuelling material around the central SMBH ??

- Non-standard accretion disk ??
- Not being AGN ??

Max-Planck-Institute for Radio Astronomy

Introduction

The parsec scale of active galactic nuclei

- Geometrically-thick, 1.0 0.5 rotating H₂ gas disk arcsec arcsec 0.0 turbulence, winds \rightarrow torus -0.5 $\sigma/V_{\text{rotation}} > 1$ -1.0-1.5Features seen in near-IR -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 arcsec high spatial resolution studies of Seyfert galaxies v [km/s] 120.0 -120.0

2. If LINERs have non-standard accretion disk

- non-standard ionizing spectrum lacking hard photons to produce coronal lines
- no gas outflows → release of gravitational energy?

3. If LINERs are a quiescent, no turbulent AGN state

- geometrically-thin, rotating H_2 disk with low σ
- no thick torus can be maintained

Max-Planck-Institute for Radio Astronomy

2. Observations

- Integral Field Spectroscopy (IFS)
 - LINERs innermost region Near-IR high spatial resolution

SINFONI instrument

("Spectrograph for INtegral Field Observation in the Near-Infrared")

VLT UT4, Paranal Observatory (Chile)

Near-diffraction limit, adaptive optics

K band (1.95-2.45 μm)

Pixel scale 100 mas, FoV 3"x 3"

Resolve spatial scale \approx 10 pc

Nuclear gas kinematics & distribution (100 pc)

Max-Planck-Institute for Radio Astronomy

3. Results

• Three LINERs with IR high spatial resolution:

NGC 1097, NGC 1052, NGC 3169

1. No coronal lines present b no photons E > 130 eV generated !!!

Davies et al. (2007) 14 1 - 0 S(0)0 S(1) 2 - 1 S(2)2-1 S(1 [Ca VIII] CO 3-1 CO 2-1 Bry Na — Stellar continuum 12 **Coronal line** ъ Stellar absorption 10 H₂ gas emission NGC 1097 r < 0.2''8 2.1 2.15 2.2 2.25 2.3 2.35 rest wavelength (μm)

Max-Planck-Institute for Radio Astronomy

2. H_2 gas kinematics in central 100 pc dominated by rotation

low velocity dispersion \Rightarrow thin rotating disk !!! $\sigma/V_{rotation} \approx \begin{bmatrix} 0.3 ; NGC 1052 \\ 0.2 ; NGC 3969 \\ 0.8 ; NGC 1097 \end{bmatrix} \sigma/V_{rotation} \approx 1.5$ Seyferts

Inner spiral H₂ gas inflow: NGC 1097, NGC 1052?

3. Abrupt increase in H₂ vel. dispersion towards center (30 pc)

Max-Planck-Institute for Radio Astronomy

Mar Mezcua

Results

Results

The parsec scale of active galactic nuclei

Mueller-Sánchez et al. (in prep.)

Max-Planck-Institute for Radio Astronomy

Mar Mezcua

4. Conclusions

- High resolution near-IR spectroscopic study of 3 LINERs
 - 1. No presence of coronal lines
 - 2. H₂ rotating thin disk
 - 3. σ increase towards center

- non-standard AGN ionizing continuum ???
- can LINERs sustain a torus ???
- disk becomes turbulent in the central 30 pc ???

• Better statistics needed

Extend studies to 5 more LINERs → SINFONI proposal submitted Selection criteria:

- Bright (to use AO), near (d<30 Mpc), accessible from Paranal
- Host early-type galaxies: avoid confusion with SF in H₂ kinematics analysis
- Secure AGN: X-ray core counterpart in 2-10 keV Chandra images

radio core

- Similar distances to Seyferts studied with SINFONI: guarantee comparison of same

physical region

Max-Planck-Institute for Radio Astronomy

Thank you!