Black hole accretion rings revealed by future X-ray spectroscopy

Vjačeslav Sochora

Astronomical Institute of the Academy of Sciences of Czech Republic

Vladimír Karas, Jiří Svoboda, Michal Dovčiak

13.4.2011

Outline

Motivation

The LOFT mission

Energy shifts

The test model

The results

Motivation

We can imagine the accretion disc as a superposition of radiating accretion rings.

The existence of an emissivity profile of a narrow ring in a spectrum may represent a realistic profile (magnetic flares as sites of local illumination).

The Large Observatory For X-ray Timming (LOFT) should have the necessary capability to measure the rings in spectra.

Then we can establish the parameters of the system with a black hole (spin, location of rings, inclination of observer) from the knowledge of extremal energy shifts of rings in spectra.

Motivation

Fig. 1: Double-horn spectral lines for observer's inclination 75 deg, black hole spin a = 0.998. Left: theoretical profiles of narrow rings orbiting in equatorial plane of a Kerr black hole. Right: theoretical profile from a set of extended ($\Delta r = 1$) rings with power-law continuum. (Karas & Sochora, 2010)

The LOFT mission*

The Large Observatory For X-ray Timing is a medium-class mission selected for the assessment phase of the ESA M3 Cosmic Vision call.

The goal of the mission are observations of compact objects to provide direct acces to strong-field gravity, black hole masses and spins, and the equation of state ultradense matter.

LOFT achieves an effective area of ~12 m² in the 2-30 keV range (broadened 6-7 keV Fe-K lines), energy resolution about 150 eV.

A good possibility to measure the double-horn profiles in spectra.

The energy shifts

$$g = \frac{E_{obs}}{E_{em}} = \frac{1}{u^t} \frac{1}{1 - \lambda \Omega}$$

Ω is Keplerian angular velocity u^t is time component of four velocity λ is one of the constants of motion (L_z/E) q^2 is the second constants of motion (Q/E^2)

$$\pm \int \frac{dr}{\sqrt{R(r,\lambda,\hat{q})}} = \pm \int \frac{d\theta}{\sqrt{\Theta(\theta,\lambda,\hat{q})}}$$

Carter equation describes the motion in radial and latitudinal direction.

72 deg and 66 deg), -1 < a < 1.

The test model

Rapidly spinning black hole in prograde rotation, *a* = 0.93.

Modarate inclination typical for a Seyfert 1 nucleus, *i* = 30 deg.

A photon-absorbed power-law continuum ($\Gamma = 1.9$, $n_{\rm H} = 4 \times 10^{21} \text{ cm}^{-2}$) and four lines component blurred by ralativistic effects.

One component originates over the entire disc surface ($r_{rms} < r < 400 r_{g}$, photon index $\alpha = 3$).

The last components are three rings ($r_{in} = 3, 4, 6 r_{g}$), the width $\Delta r = 0.5 r_{g}$.

The rest energy E = 6.4 keV.

Current Theoretical Model

Fig. 5: The profile of the test model.

data and folded model

Fig. 6: Simulated data and the ratio to the test model for N = 3, exposure time 100 ksec.

Results

Ring	g_{\min}	g_{\max}	$r_{ m in}$		$r_{ m out}$		
			a = 0.76	a = 1.00	a = 0.76	a = 1.00	
1	0.363	0.808	3.11	2.82	3.68	3.38	
2	0.478	0.906	4.11	3.90	4.87	4.63	
3	0.588	0.981	5.76	5.58	7.12	6.93	

The analysis of the spectrum gives us

- → the range of black hole spins
- → the number of rings
- → the position of rings
- → the width of rings
- → LOFT is in the present the best mission to observe rings