The power of precision – Stellar orbits around Sgr A*

Stefan Gillessen, Reinhard Genzel, Frank Eisenhauer, Thomas Ott, Katie Dodds-Eden, Oliver Pfuhl, Tobias Fritz

The GC is highly obscured

All 3 wavebands are important

Radio:

Excellent
 resolution
 (VLBI: sub-mas)

traces only gas (non-gravitational forces)

IR:

✔ Good resolution(VLT/Keck: 50mas)

traces stars
 (only gravitational forces)

X-ray:

Poor resolution(XMM/Chandra:1000mas)

traces high
 energetic
 processes

Sector States

Extremely dense star cluster

30" = 4 lightyears

The central 20": Seeing limited

1992 - 2001: "Speckle"-Imaging

You go from seeing-limited ...

.. to diffraction-limited

Progress due to high resolution

High proper motions

Accelerations

Ghez+ 2000

Eckart+ 1996

Simple-Shift & Add: corrects two terms of wavefront aberrations suppresses higher orders

Atmosphere

Atmosphere

Really a big step forward: AO

Strehl ratio 40%

NACO, HKL color composite

Diffractionlimited images

Around 100 stars with r < 1"

Stars move on Keplerian orbits

Real Data (!)

Model

Currently: > 30 orbits known

S2:

the showcase star

VLT & Keck data suitably combined

(Gillessen et al. 2009, ApJL, 707, 114)

- period: 15.9 years
- semi major axis: 125 mas
- eccentricity 0.88
- M = $4.30 \pm 0.06 \pm 0.35 \times 10^{6} M_{\odot}$

•
$$R_0 = 8.28 \pm 0.15 \pm 0.30 \text{ kpc}$$

$M = 4 \times 10^{6} M_{\odot} \text{ in } 100 \text{ AU}$

 $M = 4\pi^2 \frac{a^3}{GT^2}$ = $4\pi^2 \frac{(0.12'' \times 8 \text{ kpc})^3}{6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2} \times 15.2 \text{ yr}^2}$ = $4 \times 10^6 M_{\odot}$ p = a(1-e)= $0.12'' \times 8 \text{ kpc} \times (1-0.9)$ = 100 AU

The radio view

~0.5⁰ ~75 pc ~240 light years

Original data courtesy of A. Pedlar, K. Anantharamiah, M. Goss, and R. Ekers Image processing by N.E. Kassim, D.S. Briggs, T.J.W. Lazio, T.N. LaRosa and J. Imamura Produced at the Naval Research Laboratory, Washington, DC Tornado (SNR?)

Sgr

*

Sgr A* and mass coincide to within 2mas

IRS 19NW

Reid+ 2007

Sgr A* must be very heavy

- perfectly linear motion •reflex motion of Sun (~200 km/s)
- intrinsic motion
 - gal. I : -7.2 ± 8.5 km/s
 - gal. b: -0.4 ± 0.9 km/s
- Sgr A* is much heavier than surrounding stars • > 4 x $10^5 M_{\odot}$

Reid 2007, 2009

Sgr A* is a bright & extremely small radio source

1.3mm VLBI

Sgr A* is a MBH

- Compact mass from stellar orbits: $4 \times 10^6 \, M_{\odot}$
- Radio Sgr A* coincied with the mass
- Radio Sgr A* moves in a straight line
- Radio Sgr A* is < 1 AU

The power of monitoring stellar orbits

- Measure the mass of the central MBH
- Geometric Distance to the GC, R₀
- Test for an extended mass distribution around SgrA*
- Potential to check Schwarzschild metric
- Measure special relativistic effects
- Formation of the enigmatic stars:
 - distribution of orbital planes
 - eccentricity distribution
- Test for the existence of an IMBH in the central arcsecond
- TeV astronomy might profit

The radial velocity information allows for the geometric distance estimate

Mass and R₀ are highly correlated

pure astrometry: $M \sim R^3$

astrometry + radial velocities: $M \sim R^{2.0}$

only radial velocities: $M \sim R^0$

How well do we know that potential is that of a point mass ?

Measured fraction of mass inside of S2 orbit that is not pointlike

 $\eta = 0.018 \pm 0.014|_{\text{stat}} \pm 0.005|_{\text{model}}$

Only 2 tests:

If S-stars formed 6 Myrs ago in disk &
if they reached current orbits via
2-body-relaxation:

η = 0.033

- If diffuse X-ray emission is due to neutron stars:

Special relativistic effects during close peripassage observable with today's technique

Zucker+ 2005

Astrometric deviations are much harder to detect

Another way to look at it: Measure pericenter shift explicitely

Rubilar & Eckart (2001)

Surprisingly, the S-stars are young

S-stars: A Paradox of Youth

Ghez+ 2003

 ♦ Star formation so close the MBH impossible

♦ Stars are too young to have migrated from further out $t_{2BR} \approx 3 \, \text{Gyr}$

 $t_{\rm MS} \approx 0.1 \, {\rm Gyr}$

For r > 1": Hard to measure accelerations

(a, e, i, ω, Ω, t)

The traces for the young, clockwise moving stars intersect in one point

orientation of orbital angular momentum

Bartko+ 2009

Lu+ 2009

(Most of) the CW moving O/WR-stars revolve in a disk

Orbital planes: S-stars ≠ disk stars

Sun

Eccentricities: S-stars ≠ Disk stars

Two paradoxes of Youth

B stars

O/WR stars

1'' < R < 10''age ≈ 6 Myr R<1''age ~ 10⁸ yr

Portegies-Zwart+ 2005

Idea II: In-situ formation in infalling gas cloud

Bonnel & Rice 2008, Hobbs & Nayakshin 2008

Two paradoxes of Youth

O/WR stars

B stars

The S-stars puzzle is hard

In-situ formation

- Critical density
 ~ M/R³
 ≈ 2 × 10⁻¹¹ g/cm³
 (for R = 0.5")
- Core of clump in molecular cloud
 ≈ 10⁶/cm³

Fast transport

- cosmic pool game
- fast relaxation processes
- Migration from O/WR star disks

Rejuvination

- Stars are actually old but look young
- "stripping" of giants, S-stars are the hot cores
- Spectrum of S2

Currently a Hills-like mechanism seems to be preferred

Also an IMBH could be detectable

Gualandris, Gillessen & Merritt 2010

- Simulate S-stars, SMBH and IMBH
- Simulations with a grid of parameters:
 - $M_{\rm IMBH} = 400, 1000, 4000, 10000 {\rm M}_{\odot}$
 - a_{IMBH} = 0.3, 1, 3, 10, 30 mpc
 - e_{IMBH} = 0, 0.5, 0.7, 0.9
 - 12 orientations
- Check whether IMBH is detectable from S2 data

Fit residuals of mock S2 data: Sometimes IMBH is detectable

In roughly 50% of the cases the IMBH would have been detected.

A potential second BH in the GC would need to be light & distant

Hansen & Milosavljevic 2003, Gualandris & Merritt 2007, 2009 Merritt, Gualandirs, Mikkola 2009 Reid & Brunthaler 2004 Gillessen+ 2009

The nature of the TeV source at the GC is unknown

Aharonian+ 2006, The H.E.S.S. collaboration

S-stars could "eclipse" Sgr A*

Assume, we continue what we are doing. How well do we do then?

NACO: Astrometry with 300 μas SINFONI: Spectroscopy with 15 km/s

2020: R₀ measured to 30 pc

What is limiting astrometry today?

Bright stars: Image distortions Faint stars: Stray light

m_K

Fritz+ 2009

Imagine you could zoom in further

Expected in central 100 mas: -- ~5 stars -- K = 17..19 mag

Orbital Period: 1 year

Precession: ~ few ° per year

The next step in angular resolution:

NIR-Interferometry

A factor 15 more powerful than the VLT

VLT (8m): R = 50 mas Δx = 150 μas

VLTI (120m): R = 3 mas Δx = 10 μas

Dual feed, 4-telescope, adaptive optics assisted, fringe tracking beam combiner instrument

The physics perspective: Tests of GR

Dynamical tests: Low curvature, low mass

LIGO: Supernovae & gravitational waves

LISA: SMBH mergers & gravitational waves

submm-shadow of MBH in GC

VLTI in GC: GRAVITY

VLTI in GC: GRAVITY

VLTI in GC: GRAVITY

Summary

- The Galactic Center harbors a MBH
- Stellar orbits are an extremely useful tool for the astrophysics close to the MBH
- Stellar orbits are an extremely clean tool
- We keep on discovering things
 - as we speak
 - stay tuned

The spectrum of S2 really is that of an ordinary main sequence B2 star

Martins+ 2008