The flip-flop instability of the shock cone around the rotating black hole

Orhan Dönmez Olindo Zanotti and Luciano Rezzolla Niğde University Department of Physics Max-Planck-Institut für Gravitationsphysik, Albert Einstein Institut, Golm, Germany

Outline

Intro. GRH equations Results from numerical simulations QPOs Final remarks

Flip-flop instability?

Can cause the variation of torque Explain erratic spin behaviour of the black hole or neutron stars Wind fed X-ray binaries (Vela X-1,GX 301-2, 4U 1700-377 ...) and may be Sgr A*? Galaxies in clusters Star formation

What we know about flip-flop-1?

There are 2D numerical simulations which indicates flipflop oscillations(Blondin 2010, Foglizzo, 2005) They are all in Newtonian hydrodynamics. And the shock is mostly attached to the accreator.

What we know about flip-flop-2?

Although some observational results (Sgr A*) show the detached (bow) shock.

There is not clear evidence of the flip-flop oscilation in 3D.

It is never found in a relativistic region either in 2D or 3D.

GRH Equations-1

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

$$\nabla_{\mu}T^{\mu\nu}=0, \qquad \nabla_{\mu}J^{\mu}=0.$$

$$T^{\mu\nu} = \rho h u^{\mu} u^{\nu} + P g^{\mu\nu} \Rightarrow \text{ stress energy tensor}$$

$$J^{\mu}=
ho\!\mu^{\mu}\Longrightarrow~$$
 current density

 $h = 1 + \varepsilon + \frac{p}{\rho} \Longrightarrow \quad \text{ent}$

entalphy

GRH Equations-2

$$\begin{aligned} \frac{\partial \vec{U}}{\partial t} + \frac{\partial \vec{F}^{i}}{\partial x^{i}} &= \vec{S} \\ \vec{J} \implies \text{Conserved} \quad \vec{F}(\vec{U}) \implies \text{Flux} \quad \vec{S} \implies \text{Sources} \\ \text{Variables} \\ \vec{U} &= \begin{pmatrix} D \\ S_{j} \\ \tau \end{pmatrix} = \begin{pmatrix} \sqrt{\gamma} W \rho \\ \sqrt{\gamma} \rho h W^{2} v_{j} \\ \sqrt{\gamma} (\rho h W^{2} - P - W \rho) \end{pmatrix} \\ \vec{F}^{i} &= \begin{pmatrix} \alpha (v^{i} - \frac{1}{\alpha} \beta^{i}) D \\ \alpha \{ (v^{i} - \frac{1}{\alpha} \beta^{i}) S_{j} + \sqrt{\gamma} P \delta_{j}^{i} \} \\ \alpha \{ (v^{i} - \frac{1}{\alpha} \beta^{i}) \tau + \sqrt{\gamma} v^{i} P \} \end{aligned}$$

ATION

Initial Conditions

$(r-\phi), 1.78M \le r \le 44M \text{ ve} 0 \le \phi \le 2\pi$

Mass accretion rate-1

Mass accretion rate-2

Shock opening angle

Growth of instability

Shock opening angle

3rd Working Groups Meeting Bologna, ITALY

Final Remarks-1

Attached shock is created for $\Gamma = 1.2, 4/3, 5/3$ Deattached shock is seen for $\Gamma = 2.5$ and it is consistent with theoretical suggestion made by Foglizzo et al. (2005)

Mass accretion rate and shock openin angle are increasing function of V_{∞} . After a certain value of V_{∞} they decrease.

> Instability of shock cone depends of different parameters such as V_{∞} , C_s , R_* / R_a , and M

Final Remarks-2

The robust flip-flop instability can be achived by using supersonic flow with moderate Mach number. The shock opening angle increases with increasing sound speed

The flip-flop instability is not results of velocity or density gradient of the flow.

It is not due to numerical artifacts

> Needs to be confirmed in 3D in relativistic region.

$a = 0, \Gamma = 4/3, V_{\infty} = 0.4$

$a = 0.9, \Gamma = 4/3, V_{\infty} = 0.4$

 $a = 0.9, \Gamma = 2.5, V_{\infty} = 0.4$