Summary WG1 meeting

Xavier Calmet
Physics & Astronomy
University of Sussex

Spin-down phase of black hole evolution

Elizabeth Winstanley

Astro-Particle Theory and Cosmology Group, University of Sheffield, United Kingdom

Conclusions

"Spin-down" phase of evaporation of brane black holes

- Hawking radiation has strong angular dependence
- Rotating black holes emit fewer particles, with higher energy
- "Spin-down" phase significant for most of the life of the black hole

(New) entropic (and) classicality condition(s) for brane-world black holes

(Light or not light black holes?)

Roberto Casadio (Bologna University and INFN)

ECost meeting WGI

Bologna

Two (three...) scenarios

13 April 2011

$$M_{
m deg} \simeq M_{
m C} \simeq rac{M_{
m G}}{\sqrt{q}}$$

Work (in progress) with G.L.Alberghi, O. Micu, A. Orlar $q \simeq 1$ \longrightarrow Brane-world microscopic black holes similar to 5D ADD

 $q\gg 1$ \longrightarrow Brane-world black holes at LHC even if $M_{
m G}\gtrsim 10\,{
m TeV}$ and bulk graviton exchanges suppressed

 $q\ll 1$ \longrightarrow No black holes at LHC even if $M_{\rm G}\simeq 1{\rm TeV}$ and bulk gravitons detectable

I) Black holes found at LHC

Extra dimensions!

II) Black holes not found at LHC -

Not clear...

Cosmological production of noncommutative black holes

Piero Nicolini

Frankfurt Institute for Advances Studies (FIAS)
Institute for Theoretical Physics, Goethe University Frankfurt
Frankfurt am Main, Germany

R. Mann and P. N., arXiv:1102.5096 [gr-qc] Bologna, April 2011

Summary

Piero Nicolini

Cosmological production of noncommutative black holes

- Regular NC-Schwarzschild-deSitter solutions
- one, two, three or no horizon
- solutions for positive and negative mass parameter
- stable thermodynamics T → 0, T_c > T_{dS}
- deSitter space is at the present time stable in agreement with experience.
- ▶ the production is relevant only for $\Lambda G \sim 1$
- Planck size black holes would not have been produced
- ightharpoonup potential instability toward production of M < 0 solitons.

Quantum Black Holes

Nina Gausmann

Theoretical Particle Physics University of Sussex

- ① anomalous magnetic moment (e.g. of $\mu \to \bar{M}_P > 2 \times 10^8 \, \mathrm{GeV}$)
- (e.g. $\mu \to e \gamma \to \bar{M}_P > 7.2 \times 10^{12} \, \mathrm{GeV}$)

Experimental bounds on EDM of leptons and quarks (or e.g. for neutron, if no further suppression factors $\bar{M}_P > 4.5 \times 10^{16} \, \mathrm{GeV}$)

On the Production of Primordial Black Holes in Inflationary Cosmology

Claus Kiefer

Institut für Theoretische Physik Universität zu Köln

- Significant production of PBHs possible in inflationary cosmology with broken scale invariance;
- this could yield a significant part of cold dark matter
- Influence of non-Gaussian fluctuations? (cf. Bullock and Primack 1997)
- How was inflation realized (if it was)?
- Formation of quantum PBHs?

Discussions

- Creating (finding funding for) a network on the theme of quantum gravity in the universe.
- Writing a book? In which form?
- STFC/visits.
- Hot topics/research ideas.