

Quantum Black Holes

Nina Gausmann

Theoretical Particle Physics University of Sussex

Bologna, April 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

2 Semi-classical Black Holes and Quantum Black Holes

Effective Operators 3

- Effective Field Theory (EFT)
- Lagrangian
- Matching of Cross Sections

115 University of Sussex

・ 同 ト ・ ヨ ト ・ ヨ ト

Semi-classical Black Holes and Quantum Black Holes

Model of low scale quantum gravity: Formation of small black holes (BH) at elementary particle colliders

Semi-Classical BH

- thermal object
- decay via Hawking radiation into many particle final state
- formation unlikely since $M_{\rm BH}\gg M_{\rm P}$
- geometrical cross section: $\sigma = \pi r_{\epsilon}^2$

QBH

- non-thermal object
- decay into only a few particles
- interpretation as short-lived state

イロト イポト イヨト イヨト

 cross section from semi-classical case

Effective Field Theory (EFT) Lagrangian Matching of Cross Sections

Effective Operators for QBHs

How to model these states in particle physics processes? \rightarrow suitable Effective Field Theory

QBH

- e.g. spinless QBH is represented by scalar field
- charges in accordance with gauge quantum numbers of Standard Model

Interaction

- defined by EFT
- matching of cross section with geometrical one
- conservation of gauge symmetries
- no equal assumption for global symmetries

・ロト ・ 一 ト ・ ヨト ・ ヨト

Effective Field Theory (EFT) Lagrangian Matching of Cross Sections

University of Sussex

イロト イボト イヨト イヨト

Effective Operators for QBHs

Lagrangian

$$\mathcal{L} = rac{c}{ar{M}_P^2} \Box \phi ar{\psi} \psi + h.c.$$

- ϕ : neutral scalar field \rightarrow QBH
- ψ : fermion field
- c: adjustable parameter to match cross section, depending on CoM energy and relevant masses

Effective Field Theory (EFT) Lagrangian Matching of Cross Sections

Matching of Cross Sections

Cross section for production of scalar field

$$\sigma (2\psi \to \phi) = \frac{\pi}{s} |\mathcal{A}|^2 \, \delta(s - M_{BH}^2)$$

amplitude:
$$|\mathcal{A}\left(2\psi
ightarrow\phi
ight)|^2 = s^2 rac{c^2}{ar{M}_P^4} \left[s-(m_1+m_2)^2
ight]^2$$

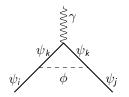
Geometrical Cross Section

$$\sigma \sim \pi r_s^2$$
 , $4 \mathrm{d}: r_s = \frac{\sqrt{s}}{4\pi \bar{M}_P^2}$

thus:
$$c^2 = \frac{1}{4\pi \left[s - (m_1 + m_2)^2\right]} \frac{\sqrt{s} \left[\left(\sqrt{s} - M_{BH}\right)^2 + \frac{\Gamma^2}{4}\right]}{\Gamma}$$
 US

Nina Gausmann

Quantum Black Holes


・ロト ・日 ・ ・ ヨ ・ ・

Effective Field Theory (EFT) Lagrangian Matching of Cross Sections

Low energy contributions

Effective Lagrangian

$$L_{eff} = \sum_{ij} \frac{1}{\bar{M}_P} \bar{\psi}_i (A_{ij} + B_{ij}\gamma_5) \sigma_{\mu\nu} \psi_j F^{\mu\nu}$$

- anomalous magnetic moment $\rightarrow \bar{M}_P > 2 \times 10^8 \text{ GeV}$
- "forbidden" lepton family number violating processes, e.g. $\mu → e\gamma$ → $\bar{M}_P > 7.2 \times 10^{12} \, \text{GeV}$
- CP violation \rightarrow EDM of leptons and quarks of SM, e.g. for neutron $\rightarrow \overline{M}_P > 4.5 \times 10^{16} \text{ GeV}$

イロト イポト イヨト イヨト

University of Sussex

Effective Field Theory (EFT) Lagrangian Matching of Cross Sections

Thanks

Thanks for your attention!

æ

Nina Gausmann Quantum Black Holes