

Detecting SMBH binaries with Pulsar Timing Arrays Joris Verbiest (MPIfR)

and K.J. Lee, A. Sesana, N. Wex

COST Meeting, Monday 15 Nov 2010

Outline

Introduction:

- Pulsar Timing (Arrays)
- Gravitational Wave Detection

Gravitational Wave sources Individual SMBHB systems Mass, Distance, counterparts. Current sensitivity Stochastic Background of MBHBs

Conclusions

Introduction: Pulsar Timing

Courtesy Andrew Jameson (Swinburne)

Courtesy Andrew Jameson (Swinburne)

Introduction: Pulsar Timing

Courtesy Andrew Jameson (Swinburne)

Introduction: Pulsar Timing

$$T_{\rm th} = \nu t + \frac{1}{2}\dot{\nu}t^2 + D\frac{\int_0^d n_e dl}{f^2} - \frac{1}{c}\left(\vec{r}\cdot\hat{s}\right) + \frac{V_{\rm T}^2 t^2}{2cd} - \frac{\left(\vec{r}\times\hat{s}\right)^2}{2cd} + \dots$$

Introduction: Pulsar Timing

Courtesy Andrew Jameson (Swinburne)

Basic Method:

Actual Pulse Arrival Time

- Theoretical Model
- = Timing Residual

$$T_{\rm th} = \nu t + \frac{1}{2}\dot{\nu}t^2 + D\frac{\int_0^d n_e dl}{f^2} - \frac{1}{c}\left(\vec{r}\cdot\hat{s}\right) + \frac{V_{\rm T}^2 t^2}{2cd} - \frac{\left(\vec{r}\times\hat{s}\right)^2}{2cd} + \dots$$

Courtesy Andrew Jameson (Swinburne)

Basic Method: Actual Pulse Arrival Time — Theoretical Model

= Timing Residual

Introduction: Pulsar Timing

$$T_{\rm th} = \nu t + \frac{1}{2}\dot{\nu}t^2 + D\frac{\int_0^d n_e dl}{f^2} - \frac{1}{c}\left(\vec{r}\cdot\hat{s}\right) + \frac{V_{\rm T}^2 t^2}{2cd} - \frac{\left(\vec{r}\times\hat{s}\right)^2}{2cd} + \dots$$

Pulsar Timing Array Concept

Source: Wikipedia

Pulsar Timing Array Concept

Pulsar Timing Array Concept

Hellings & Downs, 1983

The GW Spectrum

The GW Spectrum

The GW Spectrum

Figure courtesy George Hobbs (ATNF)

GW sources for PTAs

Kocsis & Sesana, MNRAS, 2010

Single SMBHBs

Expected timing residuals (Jenet et al., ApJ, 2004):

PSR — GW source angle (as seen from Earth)

 $\mathbf{R}(\mathbf{t}) = \frac{1}{2} \left(1 + \cos \mu \right) \left[\mathbf{r}_{+}(\mathbf{t}) \cos \left(2\psi \right) + \mathbf{r}_{\times}(\mathbf{t}) \sin \left(2\psi \right) \right]$

GW polarisation angle

$$\mathbf{r}_{+, imes}(\mathbf{t}) = \mathbf{r}_{+, imes}^{\mathbf{Earth}}(\mathbf{t}) - \mathbf{r}_{+, imes}^{\mathbf{PSR}}(\mathbf{t})$$

Integrated GW strain (at Earth and pulsar)

3C 66B, e.g.: (Sudou et al., 2003) $M_{Tot} = 5.4 \times 10^{10} \, M_\odot$ z = 0.02

Single SMBHBs — Earth term

Sesana & Vecchio (Phys.Rev.D; 2010)

- $M \ge 10^8 M_{Sun}$; z ≤ 1.5 detectable
- $\mathbf{R} \propto \mathcal{M}^{5/3}/\left(\mathbf{D_L f^{1/3}}\right)$ degeneracy

– ΔΩ ~ 40 deg² — identification of counterpart difficult.

– Only considered circular, monochromatic sources!

Single SMBHBs — PSR term

- Corbin & Cornish (ApJ; 2010)
 - Use PSR term by marginalising over PSR distance in a Bayesian analysis.
 - Consider circular, evolving GW sources
 - Evolution → SMBHB mass → GW source Distance
 - $-\Delta \Omega \sim 3 \text{ deg}^2$
 - Require high S/N (~20)

- Use PSR term from timing parallax.
- Consider circular, monochromatic GW sources
- Interference pattern between PSR and Earth term interferometer-like localisation of GW source.
- ΔΩ << 1 deg²
 → counterpart identification
 → GW source distance
 → SMBHB mass

Require high timing precision (~15 ns)

 $N_{psr} = 40 D_{psr} = 100 pc \sigma_n = 10 ns h_0 = 1e - 17$

$$\mathbf{h_0} \propto rac{\mathcal{M}^{\mathbf{5/3}}}{\mathbf{D}} \omega_{\mathbf{g}}^{\mathbf{2/3}} \left(\mathbf{1}+\mathbf{z}
ight)^{\mathbf{2/3}}$$

Single Source Limits

/ardley et al.;

MNRAS; 2010

Stochastic Background

 Generation of predicted sources: (Sesana & Vecchio, CQG, 2010)

- Millennium Run catalogue of merging galaxies
- Assign BHs to galaxies based on various models
- Assume BH accretion models
- ➡ BH coalescence rates

Impact of BH formation & evolution models

Impact of BH formation & evolution models

f₀ and γ define the spectrum
 – Measureable with SKA, but (probably) not now

• $\mathbf{h_0} \propto \sqrt{N} \mathcal{M}^{5/3}$ defines the amplitude

- Dependent on:
 - MBH mass function
 - galactic halo merger rate
 - M_{BH} σ and M_{BH} M_{bulge} relations

• See Sesana, Vecchio & Colacino, MNRAS 2008

Conclusions Pulsar timing: expected to detect GWs from SMBHBs

Single-source detection

 ② z < 2; M > 10⁷ M_{Sun} possible
 – counterpart identification hard w/o SKA
 – M-D degeneracy problematic w/o SKA

 Stochastic background depends on BH formation & evolution models, but accurate predictions not made yet.