

Study of NLSy1 galaxies as new class of gamma-ray emitting AGN

Lars Fuhrmann & F-GAMMA program & team Fermi-LAT collaboration many multi-wavelength collaborators & programs! L. Foschini (INAF) et al.

Fermi/LAT discovery of gamma-ray emission from a relativistic jet in the Narrow-Line Quasar PMN J0948+0022 **Abdo et al. 2009, ApJ, 699, 976**

- before *Fermi*/LAT: γ-ray emitting AGN are blazars and radio galaxies
- Fermi/LAT: LBAS/1LAC confirmed extragalactic γ-ray sky dominated by those!

BUT:

first *Fermi*/LAT detection of a γ-ray emitting Narrow-line Seyfert 1 (NLS1) in 2008: PMN J0948+0022 (contact author: L. Foschini)

- NLS1:
 - Seyfert-like AGN, usually spiral host galaxies
 - e.g. permitted optical lines from BLR much narrower than in Seyfert 1 or blazars (FWHM(Hβ) < 2000 km s⁻¹); no intrinsic obscuring matter
 - large fraction radio-quiet (only ~ 7% radio-loud, Komossa et al. 2006)
 - radio jets in NLS1 ?

• answer promptly:

early MW follow-up and a triggered MW campaign (Abdo et al. 2009a, 2009b, Foschini et al. 2009)

- many MW facilities involved
- first averaged SED similar to ordinary blazars

Domain	Energy band/Filter /Frequency	Facility
Gamma-rays	0.1-10 GeV	Fermi/LAT
Hard X-rays	20-100 keV	Swift/BAT
X-rays	0.2-10 keV	Swift/XRT
Optical/UV	V,B,U,UVW1,UVM2,UVW2	Swift/UVOT
Optical	B, R	АТОМ
Optical/NIR	B, R, J	SMARTS/Yale
NIR	J, H, Ks	INAOEP
NIR	J, K	WIRO
Radio	15 GHz	OVRO
Radio	cm/mm, Polarization	Effelsberg
Radio	1-22 GHz	RATAN-600
Radio	15 GHz, Polarization	MOJAVE
Radio	1.66, 22.2 GHz	e-VLBI
Radio	37 GHz	Metsahovi

- double-humped SED with disk component in UV band
- m_{BH} upper limit: 1.5 x 10⁸ M_{\odot}

- variability & SED modeling (averaged plus time-resolved) using Ghisellini & Tavecchio (2009)
- Synchro/SSC component plus EC component
- physical parameters: typically blazar-like
- jet power similar to those of blazars (intermediate between FSRQs and BL Lacs)

- presence of a relativistic jet from radio bands:
 - flux density & spectral variability/flare
 - equipartition Doppler factors of ~7
 - highly compact, unresolved 15 GHz core on pc-scales with size < 60 μas , $T_{\rm b}$ = 1.0 x 10^{12} K
 - VLBI core fractional linear polarization of 0.7%

- In summary:
 - Fermi/LAT + MW observations: NLS1 new class of γ-ray AGN hosting a relativistic jet
 - four further detections : emerging population of RL-NLS1 (Abdo et al. 2009)

Highly interesting new class of SMBH objects:

- SEDs similar to blazars/radio galaxies plus radio characteristics plus MW variability: NLSy1s host relativistic jets similar to blazars
- But differences in radio morphology optical spectrum
- optical: general different physical conditions

NLS1	blazars	
High accretion (up to 90%)	Low accretion (~ 50%)	
Small BH masses < $10^8 M_{\odot}$	Large BH masses > $10^8 \mathrm{M}_\odot$	
typically Spiral hosts	Elliptical hosts	
Parent population: NLS1 + ?	Parent population: blazars & radio galaxies	

Challenges:

- relativistic jets: typically hosted in elliptical galaxies fully developed jets in Spirals with different environment!?!
- − location of gamma-rays ? NLSy1: high accretion → high radiation density!
 - pair-production opacity high!
- parent population? NLS1s low mass set of systems "parallel" to blazars & radio galaxies ?
- additional programs/proposals (e.g. Effelsberg, XMM) and MW campaigns (e.g. Foschini et al. submitted) for future detailed studies