

Gravity Tests with Pulsar-Black Hole Systems

Norbert Wex

Valencia, Nov. 2010

Black Hole Mass

Masses of Compact Objects in X-ray Binaries

Most massive stellar-mass BH: IC 10 X-1 \rightarrow M ~ 33 M_{Sun} [*Silverman & Filippenko 2008*]

Advance of periastron

$$\langle \dot{\omega} \rangle = 3G^{2/3}c^{-2}(P_b 2\pi)^{-5/3}(1-e^2)^{-1}(m_1+m_2)^{2/3}$$

Observed value: 4.226598 ± 0.000005 deg/yr

Gravitational redshift and transverse Doppler shift amplitude

$$\gamma = G^{2/3} c^{-2} e (P_b/2\pi)^{1/3} m_2 (m_1 + 2m_2) (m_1 + m_2)^{-4/3}$$

Observed value: $4.2992 \pm 0.0008 \text{ ms}$

Calculating the neutron star masses

$$m_1 = 1.4398 \pm 0.0002 M_{\odot}$$
 and $m_2 = 1.3886 \pm 0.0002 M_{\odot}$

[Weisberg et al. 2010]

Mass Determination in a Pulsar-Black Hole System

10 M_{\odot} BH, weekly 5 × 100 μ s TOAs

 $\dot{\omega}, \gamma \implies m_{\rm PSR} \& m_{\rm BH}$

Mass Determination via the Shapiro Delay

PSR-BH System and Alternative Gravity Theories

``Quadratic Model'' by Damour & Esposito-Farèse – $T_1(\alpha_0, \beta_0)$

$$R_{\mu\nu}^{*} = \frac{8\pi G_{*}}{c^{4}} \left(T_{\mu\nu}^{*} - \frac{1}{2}T^{*}g_{\mu\nu}^{*}\right) + 2\partial_{\mu}\varphi\partial_{\nu}\varphi$$
$$g_{*}^{\mu\nu}\nabla_{\mu}^{*}\nabla_{\nu}^{*}\varphi = -\frac{4\pi G_{*}}{c^{4}} \left(\alpha_{0} + \beta_{0}\varphi\right)T_{*}$$

Physical metric:

$$\widetilde{g}_{\mu\nu} = g^*_{\mu\nu} \exp\left(2\alpha_0\varphi + \beta_0\varphi^2\right)$$

Effective coupling constant $\alpha_A = -q_A / m_A$:

Can reach order unity in <u>neutron stars</u>, even if α_0 is extremely small (spontaneous scalarization)

<u>Black holes</u> have no scalar charge (no-hair theorem)

[Damour & Esposito-Farèse 1996]

Dipolar Gravitational Radiation in a PSR-BH System

→ efficient emitter of dipolar radiation

Limits on ``Quadratic´´ Tensor-Scalar Theories

[Esposito-Farèse 2009]

Testing for Extra Spatial Dimensions

BH evaboration rate in the braneworld scenario

$$\dot{M}_{\rm BH} = -2.8 \times 10^{-7} \left(\frac{M_{\rm BH}}{M_{\odot}}\right)^{-2} \left(\frac{L}{10\,\mu{\rm m}}\right)^2 \, M_{\odot}/{\rm yr}$$

... can lead to significant changes in the orbital period

$$\frac{\dot{P}_{\rm b}}{P_{\rm b}} = -2\frac{\dot{M}_{\rm BH}}{M_{\rm BH} + M_{\rm p}}$$

[Johannsen et al. 2009, Simonetti et al. 2010]

Lense-Thirring Effect and Cosmic Censorship

The Gravitomagnetic Field of a Rotating Body

$$\mathbf{a} = \mathbf{a}_{PN}^{(M)} + \mathbf{v} \times 2\mathbf{H}$$
$$\mathbf{H} = \frac{G}{2c^2} \frac{\mathbf{S} - 3(\mathbf{S} \cdot \mathbf{r}/r)\mathbf{r}/r}{r^3}$$

Lense-Thirring Precession

$$\frac{\Omega_{\rm LT}}{\Omega_{\rm 1PN}} \approx 0.001 \left(\frac{P_{\rm b}}{1\,{\rm day}}\right)^{-1/3} \left(\frac{M_{\rm BH}}{10\,M_{\odot}}\right)^{1/3}$$

Frame Dragging Measurement

Measurement of xSecond time derivatives in ω and $x \rightarrow S$ and orientation of the BH

 \rightarrow lower limit for *S*

Cosmic censorship \rightarrow if GR is correct:

$$\chi \equiv \frac{c}{G} \frac{S}{M^2} \leq 1$$

Simulations

 $\chi = 1, \tau_{\text{merger}} = 100 \text{ Myr}$

	$A_{\rm eff}~(m^2)$	$T_{\rm sys}$ (K)	$\sigma_{30{ m min}}~(\mu s)$
Parkes FAST SKA	2.2×10^{3} 7.1×10^{4} 2.5×10^{5}	$23.5 \\ 20.0 \\ 30.0$	$\begin{array}{c} 4\\ 0.1\\ 0.04 \end{array}$

е	$M_{\rm BH}~(M_{\odot})$	$P_{\rm b}~({\rm day})$	θ	Telescope	$\hat{\sigma}_{5\mathrm{yr}}~(\chi heta)$	$\hat{\sigma}_{10 { m yr}} \left(\chi \theta ight)$	$\hat{\sigma}_{20 { m yr}} \; (\chi heta)$
0.1	5	0.166	20°	Parkes	NM NM	NM NM	$3.0\% \mid 3.0\%$
				FAST	$3.0\% \mid 2.6\%$	$0.44\% \mid 0.53\%$	$0.08\% \mid 0.08\%$
				SKA	$1.2\% \mid 1.0\%$	$0.18\% \mid 0.21\%$	$0.03\% \mid 0.03\%$
			70°	Parkes	$NM \mid NM$	$6.5\% \mid \text{NM}$	$1.1\% \mid 2.4\%$
				FAST	$1.1\% \mid 0.73\%$	$0.16\% \mid 0.33\%$	$0.03\% \mid 0.06\%$
				SKA	$0.43\% \mid 0.29\%$	$0.06\% \mid 0.13\%$	$0.01\% \mid 0.02\%$
	30	0.266	20°	Parkes	NM NM	$1.9\% \mid 2.0\%$	$0.33\% \mid 0.35\%$
				FAST	$0.31\% \mid 0.35\%$	$0.05\% \mid 0.05\%$	$0.01\% \mid 0.01\%$
				SKA	$0.12\% \mid 0.14\%$	$0.02\% \mid 0.02\%$	$<\!0.01\%$ $ <\!0.01\%$
			70°	Parkes	$4.5\% \mid 9.9\%$	$0.69\% \mid 1.5\%$	$0.12\% \mid 0.27\%$
				FAST	$0.11\% \mid 0.25\%$	$0.02\% \mid 0.04\%$	$<\!0.01\%$ $<\!0.01\%$
				SKA	$0.04\% \mid 0.10\%$	$< 0.01\% \mid < 0.01\%$	< 0.01% $< 0.01%$

The Quadrupole Moment and the No-hair Theorem 17

The No-hair Theorem

"A black hole has no hair" (J. A. Wheeler)

The Quadrupole Moment of a Black-Hole

$$\Phi(r, \theta) = -G \frac{M}{r} + G \frac{QP_2(\cos \theta)}{r^3} + O\left(\frac{1}{r^4}\right)$$

Black hole <u>"no-hair" (uniqueness) theorem</u> of general relativity implies: all multipole moments of the gravitational field are determined by *M* and *S*

e.g. the quadrupole moment:

Secular precession much smaller than frame dragging and can therefore not be separated from the Lense-Thirring precession.

Quadrupole moment leads to characteristic periodic terms in the orbital motion,

but...

Measuring the Quadrupole Moment of the Black Hole

Pulsar in a 0.1 yr orbit around Sgr A*: Extreme Kerr, 3 orbits, 160 TOAs with 100 μ s error, e = 0.4

Conclusions

- A pulsar-black hole system
- ...will give a precise value for the black hole mass
- ...will provide a unique laboratory for gravity theories
- ...will allow the measurment of frame dragging for orbital periods < 10 days
- ...can provide a full spin determination in case of a tight orbit
- ...needs to host a black hole $\gtrsim 100 \text{ M}_{\odot}$ for a no-hair theorem test