Accretion onto stellar-mass black holes

2010-11-15

Anthony Rushton ESO fellow (Onsala Space Observatory)

Image credit: ESA

Overview of Work Group 2

Stellar-mass black holes and pulsars

• Two work group leaders:

- Anthony Rushton (Accretion)
- Robert Ferdman (Pulsars)

Overview of Work Group 2

• Accretion on to stellar-mass black holes.

• Pulsar timing in the orbit of a black hole.

- Synergies with other WGs:
 - Using pulsars to detect gravitational waves from super-massive black holes.
 - Microquasars to Quasars: Scale invariants, intermediate-mass BHs and their growth/evolution.

Overview of Work Group 2

• Accretion on to stellar-mass black holes.

• Pulsar timing in the orbit of a black hole.

- Synergies with other WGs:
 - Using pulsars to detect gravitational waves from super-massive black holes.
 - Microquasars to Quasars: Scale invariants, intermediate-mass BHs and their growth/evolution.

High energy stellar-ma

Binary systems with a *compo*

- The companion star maybe:
 - High-mass star
 - Low-mass star

High energy stellar-mass accretion: X-ray binaries

Low-mass star

- The compact object maybe:
 - White Dwarf
 - Neutron star (possibly a pulsar)
 - Stellar-mass Black Hole

Rapid spectral variability

(low) Hard-state for black holes

(high) Soft-state for black holes

- Piergiorgio Casella

Universal correlation of BH XRBs in the low state

Fundamental plane of black holes

Spin: Power Generation

Blandford and Znajek 1977: energy released from the accretion disk/black-hole system from BH spin: power in the jet is

$$P = 10^{35} \left(\frac{J}{J_{\text{max}}}\right)^2 \left(\frac{M}{M_{\text{sun}}}\right)^2 \left(\frac{B}{10^8}\right)^2$$

(In ergs/sec, J is spin of BH, B in gauss)

What's the value of B?

Typical jet luminosities suggest $B \sim 10^8$ gauss or more

- Ralph Spencer

Spin: Power Generation

12

X-ray emission shows QPO(s)

Light bending and relativistic beaming can modulate the X-ray emission from an oscillating torus.

A torus viewed from 45 degrees latitude (Bursa)

A torus viewed from 5 degrees latitude (Bursa)

- Ulf Torkelsson

What is the relationship between the different bands (i.e. IR to X)? How does the spin of a black hole effect the emission? How does the BH effect the QPO?

How does the stellar wind of high-mass stars effect the jet?