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The horizon equation g00(rH) = −g−1
rr (rH) = 0

−g−1
rr vs r , for various values of M/`.

M = 3 ` ⇒ two horizons;
M = ` ⇒ no horizon;

M = 1.9 ` ⇒ one degenerate horizon r0 ≈ 3.0 `, extremal BH.
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I The Ricci scalar near the origin is

R ( 0 ) =
4M√
π `3
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I The curvature is constant and positive ( deSitter geometry )

I If M < M0 ⇒ no BH and no naked singularity
(mini-gravastar?)

Large mass regime, M � M0

I inner horizon → origin

I outer horizon → 2M
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The Hawking temperature
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3/2 ; r 2
H/4`2

) ] (11)

I If r 2
H/4`2 >> 1 ⇒ TH = 1

4π rH
coincides with the Hawking

result

I If rH ' ` ⇒ TH reaches a maximum ' 0.015× 1/`
corresponds to a mass M ' 2.4× ` and rH ' 4.7`

I SCRAM phase: cooling down to absolute zero at
rH = r0 = 3.0` and M = M0 = 1.9 `, the extremal BH

I If r < r0 there is no black hole.
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TH vs rH for the commutative and NC case.



The Schwarzshild Geometry in the presence of `

Back reaction

I relevant back-reaction in Planck phase.

I SCRAM phase ⇒ a suppression of quantum back-reaction

I At maximum temperature, the thermal energy is
E = T Max

H ' 0.015 /`, while the mass is M ' 2.4 `M2
P

I E ∼ M ⇒ ` ≈ 0.2 LP ∼ 10−34 cm.

I For this reason we can safely use unmodified form of the
metric during all the evaporation process.
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Extradimensional Solutions

I ds2
(m+1) = g00 dt2 − g−1

00 dr 2 − r 2dΩ2
m−1

I

g00 = 1− 1

Mm−1
∗

2M

rm−2Γ
(

m
2

) (12)

I Properties of the solutions
I Geometric and thermodynamic behavior equivalent to the 4d

one.
I ⇒ there exists a mass threshold M0 below which BH do not

form.
I ⇒ there exists a zero temperature black hole remnant

BH remnants

I 1/` ∼ M∗ ∼ 1 TeV

I remnant cross section σBH ' πr 2
0 ∼ 10 nb −→ 10 BHs per

second at LHC.
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Extradimensional Solutions

Maximum Temperatures for different m in the neutral case

3 4 5 6 7 8 9 10
T max

H (GeV) 18× 1016 30 43 56 67 78 89 98
T max

H (1015K ) .21× 1016 .35 .50 .65 .78 .91 1.0 1.1

Remnant Masses and radii for different m

3 4 5 6 7 8 9 10

M0 (TeV) 2.3 ×1016 6.7 24 94 3.8× 102 1.6× 103 7.3× 103 3.4× 104

r0 (10−4 fm) 4.88× 10−16 5.29 4.95 4.75 4.62 4.52 4.46 4.40
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Black hole life times
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1
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Numerical results

I Assuming Min = 10 TeV, for both brane and bulk emission

tdecay . 10−16 sec , (14)

for any m = 3− 10.
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Regular black hole spacetimes

Black hole solutions in the presence of `

I Regular Schwarzschild and Reissner-Nordstroem solutions

I one, two or no horizon

I a regular deSitter core in place of the coordinate singularity

I The singular behavior of the Hawking temperature is cured.

I Found also the dirty, extradimensional cases and wormholes.

Recent solutions (2010)

I Spinning case

I Charged spinning case

I Regular deSitter belt in place of the ring singularity
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