
Black holes in the presence of a minimal length

Piero Nicolini

Frankfurt Institute for Advances Studies (FIAS)
Institute for Theoretical Physics, Goethe University Frankfurt

Frankfurt am Main, Germany

Max Planck Institut fuer Radioastronomie, Bonn June 2010



Black hole evaporation

(Mini) Black hole life

TH vs rH

I Balding phase

I Spin down phase

I Schwarzschild phase TH ∼ 1/rH
I Planck phase (?)



Black hole evaporation

(Mini) Black hole life

TH vs rH

I Balding phase

I Spin down phase

I Schwarzschild phase TH ∼ 1/rH
I Planck phase (?)



Black hole evaporation

(Mini) Black hole life

TH vs rH

I Balding phase

I Spin down phase

I Schwarzschild phase TH ∼ 1/rH
I Planck phase (?)



Black hole evaporation

(Mini) Black hole life

TH vs rH

I Balding phase

I Spin down phase

I Schwarzschild phase TH ∼ 1/rH
I Planck phase (?)



Black hole evaporation

(Mini) Black hole life

TH vs rH

I Balding phase

I Spin down phase

I Schwarzschild phase TH ∼ 1/rH
I Planck phase (?)



(Mini) Black holes @ LHC & Cosmic ray showers



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Black Hole Spacetimes

Problem

I Curvature Singularity

I Divergent temperature at the evaporation endpoint

I Ill defined thermodynamics

I Breakdown of General Relativity at short scales

Solution

I We must invoke Quantum Gravity
I Viable approaches

I String Theory induced Noncommutative Geometry
I Generalized Uncertainty Principle
I Loop Quantum Gravity
I Asymptotically Safe Gravity



Quasi-classical source terms

The presence of a minimal length

I Delocalization of source terms within a Quantum Gravity
induced minimal length `

I

δ(~x)→ ρ`(~x
2) =

M

(4π`2)3/2
exp

(
−
~x2

4`2

)

The energy-momentum tensor delocalization

I

T 0
0 = −ρ`(~x2) (1)

I

Tµν ; ν = 0 (2)



Quasi-classical source terms

The presence of a minimal length

I Delocalization of source terms within a Quantum Gravity
induced minimal length `

I

δ(~x)→ ρ`(~x
2) =

M

(4π`2)3/2
exp

(
−
~x2

4`2

)

The energy-momentum tensor delocalization

I

T 0
0 = −ρ`(~x2) (1)

I

Tµν ; ν = 0 (2)



Quasi-classical source terms

The presence of a minimal length

I Delocalization of source terms within a Quantum Gravity
induced minimal length `

I

δ(~x)→ ρ`(~x
2) =

M

(4π`2)3/2
exp

(
−
~x2

4`2

)

The energy-momentum tensor delocalization

I

T 0
0 = −ρ`(~x2) (1)

I

Tµν ; ν = 0 (2)



Quasi-classical source terms

The presence of a minimal length

I Delocalization of source terms within a Quantum Gravity
induced minimal length `

I

δ(~x)→ ρ`(~x
2) =

M

(4π`2)3/2
exp

(
−
~x2

4`2

)

The energy-momentum tensor delocalization

I

T 0
0 = −ρ`(~x2) (1)

I

Tµν ; ν = 0 (2)



Quasi-classical source terms

The presence of a minimal length

I Delocalization of source terms within a Quantum Gravity
induced minimal length `

I

δ(~x)→ ρ`(~x
2) =

M

(4π`2)3/2
exp

(
−
~x2

4`2

)

The energy-momentum tensor delocalization

I

T 0
0 = −ρ`(~x2) (1)

I

Tµν ; ν = 0 (2)



Quasi-classical source terms

The presence of a minimal length

I Delocalization of source terms within a Quantum Gravity
induced minimal length `

I

δ(~x)→ ρ`(~x
2) =

M

(4π`2)3/2
exp

(
−
~x2

4`2

)

The energy-momentum tensor delocalization

I

T 0
0 = −ρ`(~x2) (1)

I

Tµν ; ν = 0 (2)



Quasi-classical source terms

The presence of a minimal length

I Delocalization of source terms within a Quantum Gravity
induced minimal length `

I

δ(~x)→ ρ`(~x
2) =

M

(4π`2)3/2
exp

(
−
~x2

4`2

)

The energy-momentum tensor delocalization

I

T 0
0 = −ρ`(~x2) (1)

I

Tµν ; ν = 0 (2)



The Schwarzshild Geometry in the presence of `

Einstein/fluid equations

I

ds2 = −e2Φ( r ) ( 1− 2m ( r ) /r ) dt2 +
dr 2

1− 2m ( r ) /r
+ r 2 dΩ2

(3)

I

dm

dr
= 4π r 2ρ , (4)

1

2g00

dg00

dr
=

m(r) + 4π r 3pr

r(r − 2m(r))
, (5)

dpr

dr
= − 1

2g00

dg00

dr
( ρ+ pr ) +

2

r
( p⊥ − pr ) (6)

I

pr = −ρ` (7)



The Schwarzshild Geometry in the presence of `

Einstein/fluid equations

I

ds2 = −e2Φ( r ) ( 1− 2m ( r ) /r ) dt2 +
dr 2

1− 2m ( r ) /r
+ r 2 dΩ2

(3)

I

dm

dr
= 4π r 2ρ , (4)

1

2g00

dg00

dr
=

m(r) + 4π r 3pr

r(r − 2m(r))
, (5)

dpr

dr
= − 1

2g00

dg00

dr
( ρ+ pr ) +

2

r
( p⊥ − pr ) (6)

I

pr = −ρ` (7)



The Schwarzshild Geometry in the presence of `

Einstein/fluid equations

I

ds2 = −e2Φ( r ) ( 1− 2m ( r ) /r ) dt2 +
dr 2

1− 2m ( r ) /r
+ r 2 dΩ2

(3)

I

dm

dr
= 4π r 2ρ , (4)

1

2g00

dg00

dr
=

m(r) + 4π r 3pr

r(r − 2m(r))
, (5)

dpr

dr
= − 1

2g00

dg00

dr
( ρ+ pr ) +

2

r
( p⊥ − pr ) (6)

I

pr = −ρ` (7)



The Schwarzshild Geometry in the presence of `

Einstein/fluid equations

I

ds2 = −e2Φ( r ) ( 1− 2m ( r ) /r ) dt2 +
dr 2

1− 2m ( r ) /r
+ r 2 dΩ2

(3)

I

dm

dr
= 4π r 2ρ , (4)

1

2g00

dg00

dr
=

m(r) + 4π r 3pr

r(r − 2m(r))
, (5)

dpr

dr
= − 1

2g00

dg00

dr
( ρ+ pr ) +

2

r
( p⊥ − pr ) (6)

I

pr = −ρ` (7)



The Schwarzshild Geometry in the presence of `

Einstein/fluid equations

I

ds2 = −e2Φ( r ) ( 1− 2m ( r ) /r ) dt2 +
dr 2

1− 2m ( r ) /r
+ r 2 dΩ2

(3)

I

dm

dr
= 4π r 2ρ , (4)

1

2g00

dg00

dr
=

m(r) + 4π r 3pr

r(r − 2m(r))
, (5)

dpr

dr
= − 1

2g00

dg00

dr
( ρ+ pr ) +

2

r
( p⊥ − pr ) (6)

I

pr = −ρ` (7)



The Schwarzshild Geometry in the presence of `

The solution

I (GN = 1, c = 1)

ds2 =

(
1− 4M

r
√
π
γ

)
dt2 −

(
1− 4M

r
√
π
γ

)−1

dr 2 − r 2 dΩ2

(8)

I γ ≡ γ
(
3/2 , r 2/4`2

)
is the lower incomplete Gamma function:

γ
(
3/2 , r 2/4`2

)
≡
∫ r2/4`2

0
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The horizon equation g00(rH) = −g−1
rr (rH) = 0

−g−1
rr vs r , for various values of M/`.

M = 3 ` ⇒ two horizons;
M = ` ⇒ no horizon;

M = 1.9 ` ⇒ one degenerate horizon r0 ≈ 3.0 `, extremal BH.
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At the black hole centre

I The Ricci scalar near the origin is

R ( 0 ) =
4M√
π `3

(10)

I The curvature is constant and positive ( deSitter geometry )

I If M < M0 ⇒ no BH and no naked singularity
(mini-gravastar?)

Large mass regime, M � M0

I inner horizon → origin

I outer horizon → 2M
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The Hawking temperature
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3/2 ; r 2
H/4`2

) ] (11)

I If r 2
H/4`2 >> 1 ⇒ TH = 1

4π rH
coincides with the Hawking

result

I If rH ' ` ⇒ TH reaches a maximum ' 0.015× 1/`
corresponds to a mass M ' 2.4× ` and rH ' 4.7`

I SCRAM phase: cooling down to absolute zero at
rH = r0 = 3.0` and M = M0 = 1.9 `, the extremal BH

I If r < r0 there is no black hole.
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TH vs rH for the commutative and NC case.



The Schwarzshild Geometry in the presence of `

Back reaction

I relevant back-reaction in Planck phase.

I SCRAM phase ⇒ a suppression of quantum back-reaction

I At maximum temperature, the thermal energy is
E = T Max

H ' 0.015 /`, while the mass is M ' 2.4 `M2
P

I E ∼ M ⇒ ` ≈ 0.2 LP ∼ 10−34 cm.

I For this reason we can safely use unmodified form of the
metric during all the evaporation process.
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Extradimensional Solutions

I ds2
(m+1) = g00 dt2 − g−1

00 dr 2 − r 2dΩ2
m−1

I

g00 = 1− 1

Mm−1
∗

2M

rm−2Γ
(

m
2

) (12)

I Properties of the solutions
I Geometric and thermodynamic behavior equivalent to the 4d

one.
I ⇒ there exists a mass threshold M0 below which BH do not

form.
I ⇒ there exists a zero temperature black hole remnant

BH remnants

I 1/` ∼ M∗ ∼ 1 TeV

I remnant cross section σBH ' πr 2
0 ∼ 10 nb −→ 10 BHs per

second at LHC.
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Extradimensional Solutions

Maximum Temperatures for different m in the neutral case

3 4 5 6 7 8 9 10
T max

H (GeV) 18× 1016 30 43 56 67 78 89 98
T max

H (1015K ) .21× 1016 .35 .50 .65 .78 .91 1.0 1.1

Remnant Masses and radii for different m

3 4 5 6 7 8 9 10

M0 (TeV) 2.3 ×1016 6.7 24 94 3.8× 102 1.6× 103 7.3× 103 3.4× 104

r0 (10−4 fm) 4.88× 10−16 5.29 4.95 4.75 4.62 4.52 4.46 4.40
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Black hole life times
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1
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Numerical results

I Assuming Min = 10 TeV, for both brane and bulk emission

tdecay . 10−16 sec , (14)

for any m = 3− 10.
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Regular black hole spacetimes

Black hole solutions in the presence of `

I Regular Schwarzschild and Reissner-Nordstroem solutions

I one, two or no horizon

I a regular deSitter core in place of the coordinate singularity

I The singular behavior of the Hawking temperature is cured.

I Found also the dirty, extradimensional cases and wormholes.

Recent solutions (2010)

I Spinning case

I Charged spinning case

I Regular deSitter belt in place of the ring singularity
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