

Tidal-charged black holes @the LHC

Octavian Micu (TU Dortmund) octavian.micu@tu-dortmund.de

Black Holes in a Violent Universe June 25, 2010

- A brief history...
- Brane-world black holes basics. Existence
- Accretion
- Evaporation
- Time evolution
- Black holes in the RS scenario
- Conclusions

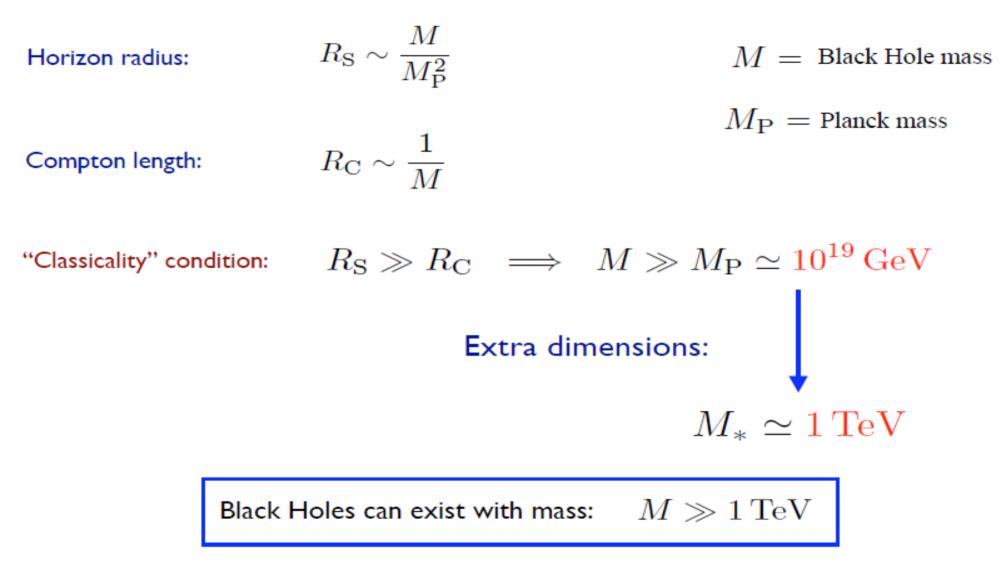
- N. Dadhich, R. Maartens, P. Papadopoulos and V. Rezania, Phys. Lett. B 487, 1 (2000).
 RS effective 4D Einstein equations admit tidal-charged black hole solutions
- R. Casadio and B. Harms, Int. J. Mod. Phys. A **17**, 4635 (2002).

tidal charged micro-black holes may be long-lived (>>1 sec)

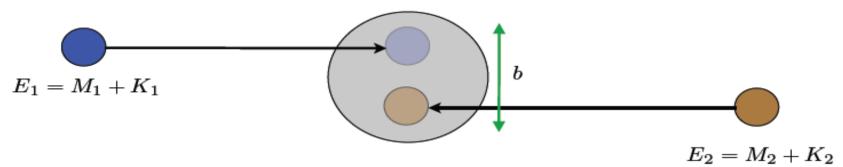
• S. Giddings and M. Mangano, Phys. Rev. D 78, 035009 (2008):

micro-black holes at LHC are no threat

- J.R. Ellis, G. Giudice, M.L. Mangano, I. Tkachev, U. Wiedemann, J. Phys. G 78, 115004 (2008): LHC is safe!
- R. Plaga, arXiv:0808.1415:


micro-black holes from 1-2 (not considered in 3-4) can cause catastrophe at LHC!

• R.Casadio, S. Fabi, B. Harms, and O. Micu, JHEP 1002:079, 2010:


micro-black holes from 1-2 at the LHC are not bad

Brane-world black hole basics: Existence

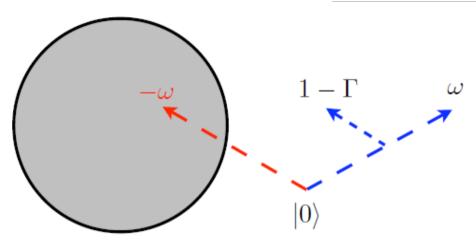
Four dimensions:

Brane-world black holes production

• Black hole forms if:

$$b < \frac{E_1 + E_2}{M_{(5)}^2} \sim \frac{M}{M_{(5)}^2} \sim R_H$$

• 4D Cross section:


$$\sigma(E_1, E_2) \sim \pi R_H^2$$

- Numerically supported: H. Yoshino et al., Phys. Rev. D 71 (2005) 104028
- Numerical coefficients are model dependent!

Brane-world black holes. Evaporation

Hawking evaporation

$$\frac{dM}{d\tau} = -\mathcal{A}_{(D)} \sum_{s} \int_{0}^{\infty} \Gamma_{(D)}^{(s)} n_{(D)}^{(s)} \omega^{D-1} d\omega$$

- Grey body factors $\implies \Gamma^{(s)}_{(D)}(\omega)$
- → Horizon area $\implies \mathcal{A}_{(D)}$
- → # of available particles $\implies n^{(s)}_{(D)}(\omega)$

- Area in 4 or D dimensions?
- Grey body factors?
- Canonical occupation # of particles?

$$n_{(D)}^{(s)}(\omega) = \frac{1}{\mathrm{e}^{\beta\,\omega}\pm 1} \qquad \qquad \beta = \frac{1}{T_H} \sim R_H$$

Brane-world black holes. Evaporation

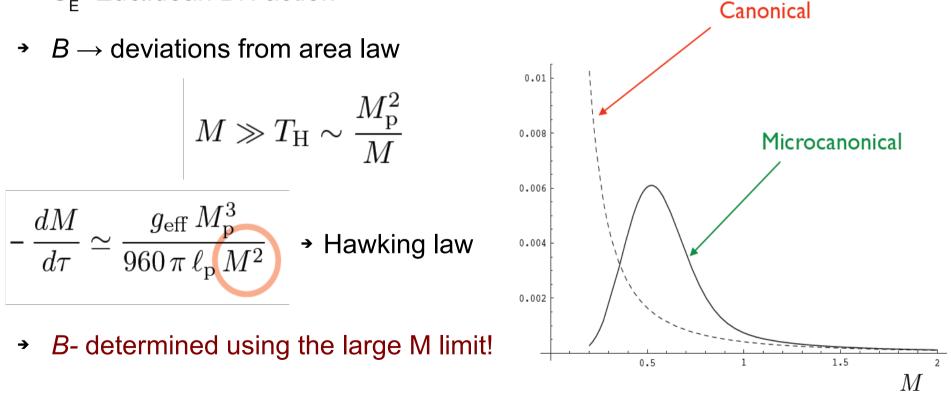
Canonical ensemble:

$$n(\omega) \simeq \frac{1}{\mathrm{e}^{\frac{M}{M_*^2}\omega} \pm 1}$$

Peak production at:

$$n(\omega > M) > 0$$

 Cutoff the integral at ω=M/2, or use the microcanonical # of particles!


Brane-world black holes. Evaporation

Microcanonical # of particles.

R. Casadio and B. Harms, Phys. Rev. D 58, 044014 (1998).

$$n(\omega) = B \sum_{n=1}^{[[M/\omega]]} \exp\left\{\frac{S_{\rm E}(M-n\,\omega)}{\ell_{\rm p}\,M_{\rm p}} - \frac{S_{\rm E}(M)}{\ell_{\rm p}\,M_{\rm p}}\right\}$$

→ S_E =Euclidean BH action

Octavian Micu (TU Dortmund)

Brane-world black holes. Accretion

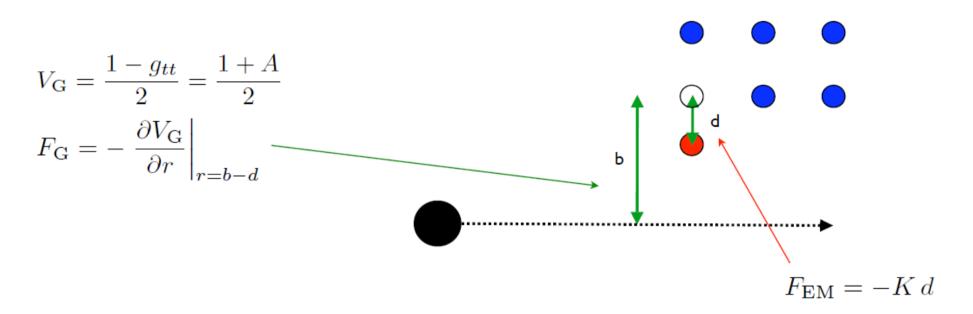
• Subatomic accretion

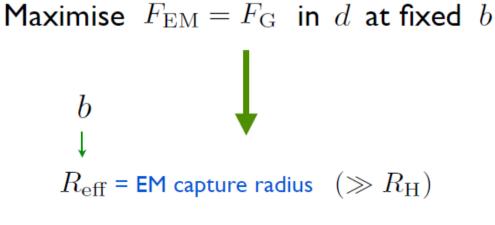
$$\left. \frac{dM}{dt} \right|_{\rm acc} = \pi \, v \, \rho \, R_{\rm eff}^2$$

- v =Black hole velocity
- ρ =Medium average density
- → Reff = Rffective radius gravitaty overcomes EM force
- Black hole sweeps through matter and absorbs nuclei within capture radius

- Bondi accretion
- Black hole at rest absorbs nuclei with thermal velocity smaller than escape velocity
- → Effective if

$$R_{\rm eff}\simeq 1\,{\rm \AA}$$

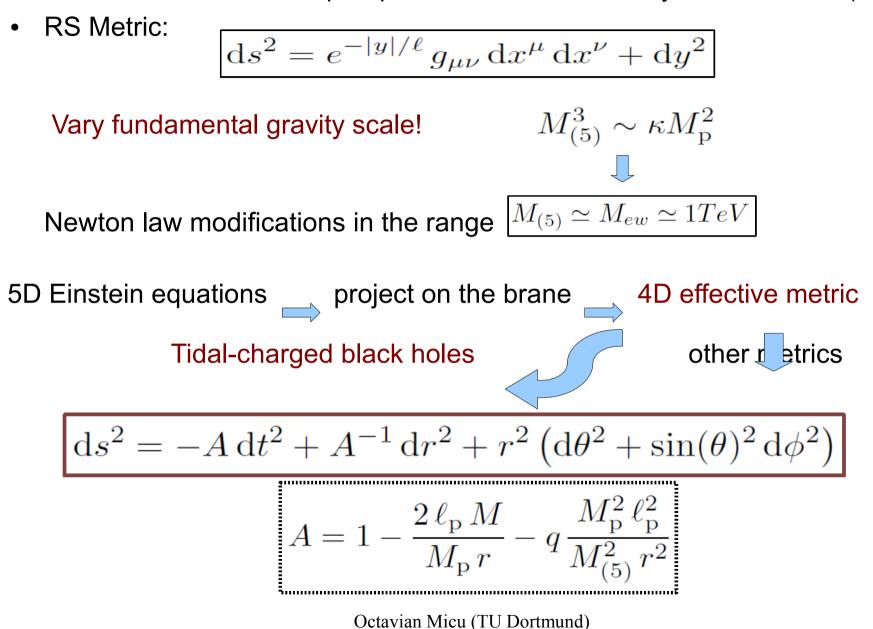

Much more efficient!


Please not on Earth!

Brane-world black holes. Accretion

• Newtonian capture radius

Brane-world black holes. Time evolution


• Time evolution: subatomic accretion + evaporation

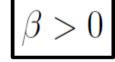
$$\begin{cases} \left. \frac{dM}{dt} = \frac{dM}{dt} \right|_{\text{acc}} + \left. \frac{dM}{dt} \right|_{\text{evap}} \\ \left. \frac{dp}{dt} = \frac{p}{M} \left. \frac{dM}{dt} \right|_{\text{evap}} \end{cases}$$

• Check that we are not within Bondi accretion regime!

Brane world basics

L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) N. Dadhich, R. Maartens, P. Papadopoulos and V. Rezania, Phys. Lett. B 487, 1 (2000)

Brane-world black hole metrics


R. Casadio, S. Fabi, B. Harms, O. Micu, JHEP **1002:097,** 2010. arXiv: 0911.1884. R. Casadio, B. Harms, O. Micu, arXiv: 1003.2572.

Tidal black holes:

$$4 = 1 - \frac{2\,\ell_{\rm p}\,M}{M_{\rm p}\,r} - q\,\frac{M_{\rm p}^2\,\ell_{\rm p}^2}{M_{(5)}^2\,r^2}$$

tidal charge parametrization

$$q \simeq \left(\frac{M_{\rm p}}{M_{(5)}}\right)^{\alpha} \left(\frac{M}{M_{(5)}}\right)^{\beta}$$

Restrictions on the parameters:

- → correct limiting cases,
- → tidal term >> usual GR term
- → black holes are 5 dimensional (the horizon radius is smaller than the length scale at which corrections to Newton's law have not been detected)
- → condition of classicality.

Tidal charged black holes time evolution

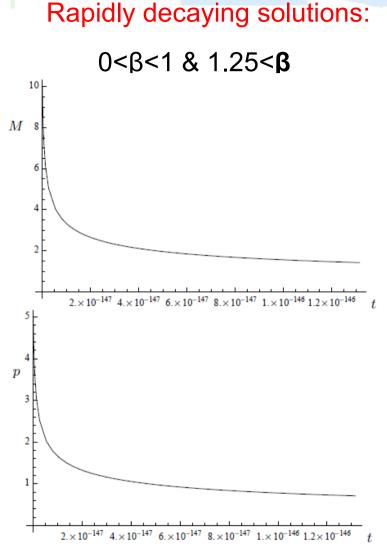


FIG. 3: Mass (in TeV/ c^2) and momentum (in TeV/c) for $L = 1 \,\mu\text{m}$, $\beta = 0.5$, $\alpha = -1.5$, $M(0) = 10 \,\text{TeV}/c^2$ and $p(0) = 5 \,\text{TeV}/c$.

1<β<1.25

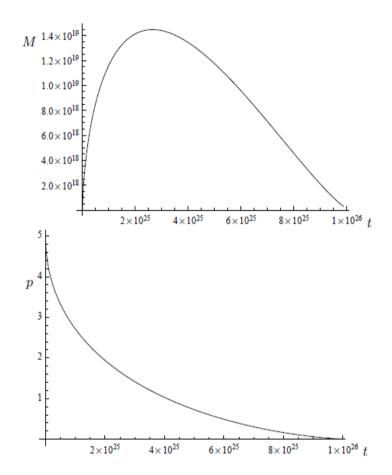
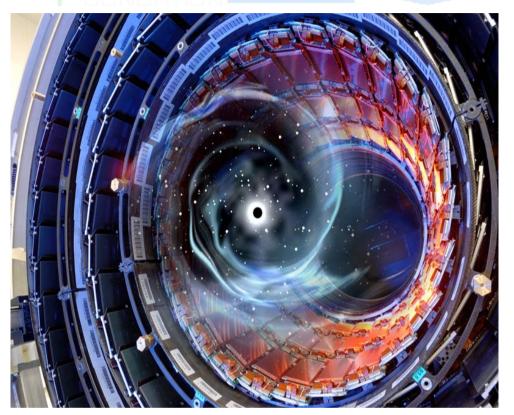


FIG. 4: Mass (in TeV/ c^2) and momentum (in TeV/c) for $L = 44 \,\mu\text{m}$, $\beta = 1.25$, $\alpha = -1.8$, $M(0) = 10 \,\text{TeV}/c^2$ and $p(0) = 5 \,\text{TeV}/c$.

Tidal charged black holes time evolution


• Timevolution for black holes which are trapped within the Earth.

$L (\mu m)$	α	$M_{\rm c}~({\rm TeV}/c^2)$	$dM/dt _{t=0}$	M (kg)	$R_{\rm EM}$ (m)	$R_{\rm H}$ (m)
44	-1.44	$2 \cdot 10^{53}$	$2.8\cdot 10^{-2}$	$4.0 \cdot 10^{-13}$	$1.3 \cdot 10^{-14}$	$9.0 \cdot 10^{-25}$
5.0	-1.50	$4 \cdot 10^{53}$	$1.1\cdot 10^{-2}$	$1.9 \cdot 10^{-13}$	$6.5 \cdot 10^{-15}$	$2.0 \cdot 10^{-25}$
$1.0 \cdot 10^{-1}$	1.59	$1 \cdot 10^{51}$	$1.3\cdot 10^{-3}$	$5.3 \cdot 10^{-14}$	$1.7 \cdot 10^{-15}$	$1.8 \cdot 10^{-26}$
$1.0\cdot 10^{-2}$	-1.67	$1\cdot 10^{54}$	$4.5\cdot 10^{-4}$	$2.4 \cdot 10^{-14}$	$8.1 \cdot 10^{-16}$	$2.7 \cdot 10^{-27}$

TABLE V: Time evolution of black hole mass with critical mass M_c near upper bound for time equal to approximative age of the Universe and $\beta = 1.1$. Initial conditions are: $M(0) = 11 \text{ TeV}/c^2$ and p(0) = 0.0001 TeV/c.

- Momentum is kept small enough so that the velocity is smaller than the escape velocity.
- Maximum atainable mass is obtained when parameters have such values that M_c is near its maximum allowed value M_x.
- The mass evolution is evaluated for 10¹⁸ s (a time equal to the present age of the universe from BH creation into the future).
- Maximum mass after that time is $\sim 10^{-13}$ kg and horizon radius $\sim 10^{-25}$ m.

Conclusions

- Artistic view of a BH in the LHC detector, from Discovery news article "Man made (but very tiny) black holes possible!" based on:
- R. Casadio, S. Fabi, B. Harms, O. Micu; JHEP **1002:097,** 2010.

- Tidal charged BHs @ the LHC are possible in the RS scenario.
- BHs can decay instantly or be long lived and can escape from the detectors as missing energy.
- a) BHs with large initial momentum, escape the Earth and accretion turns off!
- b) BHs with small enough momentum be trapped in the Earth, mass still insignificant within 10⁷ years.
- a) & b) => Doomsday will not happen because of BHs created @ LHC!
- One should take missing energy due to BHs production into account when analysing the LHC data!