Non thermal phenomena in Galaxy Clusters

F.Vazza M.Bruggen , G. Brunetti C. Gheller , A. Bonafede, +....

Summary:

 Cosmic rays protons from shocks and AGNs in simulated clusters

• (spatial location of) Radio relics

• Work in progress

EVIDENCE OF NT ENERGY IN COMA

+ UPPER LIMIT ON GAMMA EMISSION by FERMI: <10⁴²erg/s (Ackermann et al.2010)

+ INVERSE COMPTON EMISSION? very debated! (FuscoFemiano+04, Vik+2010) Pseudo-pressure fluctuations \rightarrow turbulence with P_{turb}/nKT~0.2-0.3

et al.2010 (VLA

Bonafede

MANY EXAMPLES! Bullet

Colors:

X-ray

Contours:

radio

Observations:

<u>Theory & simulations:</u>

<u>RADIO RELICS</u> provide evidence for relativistic ELECTRONS acceleration at shocks \rightarrow much more PROTONS should be accelerated according to DSA

Miniati+02 (see also Ryu+03, Pfrommer+06)

<u>STRUCTURE FORMATION</u> <u>SHOCKS</u> can inject CR protons with high efficiency (10–50% of thermal pool) Modelling injection and feedback of Cosmic Rays in grid-based cosmological simulations: effects on cluster outskirts.

F. Vazza^{1,2*}, M.Brüggen¹, C.Gheller³, G. Brunetti²

<u>Two-fluid model</u> Dorfi 1984; Bell 1987; Jones & Kang 1990; etc...

$$\begin{aligned} \frac{d\rho}{dt} + \rho \nabla \cdot \boldsymbol{u} &= 0 , \\ \frac{d\boldsymbol{u}}{dt} &= -\frac{1}{\rho} \nabla (P_g + P_c) , \\ \frac{d\boldsymbol{e}}{dt} &= -\frac{1}{\rho} \nabla \cdot [(P_g + P_c)\boldsymbol{u}] + \frac{1}{\rho} P_c \nabla \cdot \boldsymbol{u} - \frac{S}{\rho} , \\ \frac{d\boldsymbol{E}_c}{dt} &= -\frac{\gamma_c E_c} (\nabla \cdot \boldsymbol{u}) + \nabla \cdot (\boldsymbol{x} \boldsymbol{e} \nabla E_c) + S . \end{aligned}$$

In cosmology:

- •Miniati 2003 (fixed grid)
- •Pfrommer et al 2006 & Ensslin et al.2007 (SPH)

Ingredients:

- -Cosmic rays pressure
- Source term (e·g· shocks)
- Equation of state $P_c = (\gamma_c - 1)E_c$ with $\gamma_c = 4/3$
- Cosmic rays diffusion

1-D tests for validation: <u>from M=1.5 to M=5</u>

Injection of CR for increasing Mach

Efficiency from theoretical works

Diffusive shock accleration ~works in supernovae

1-D tests for validation : SHOCK TUBE

Initial conditions:

LEFT: Pgas=10, Pcr=6, dens=9

RIGHT:Pgas=1,Pcr=0,dens=1

Acceleration efficiency η at shocks ~ 0.5%

 We monitor the injection of energy across shocks at run time (velocity-jump or pressure-jump algorithm)

shocks energy flux

Average radial profiles of Mach number

THERMAL GAS PRESSURE

Same IC as in Vazza+10 Max res= 25kpc Run at Juropa / SP6-Cineca 10-20 % longer CPU time - 10% more data

COSMIC RAYS PRESSURE

COSMIC RAYS PRESSURE

THERMAL GAS PRESSURE

See movie (injection from z=0.6 on)

Non radiative clusters:

Pcr/ nkT <5% (core) Pcr/ nkT<10% (R_{200}) Largest effects at R_{200}

Cosmic rays enhance compressibility of the ICM at R_{200} X-ray lum. and SZ are affected by 10-20%

(small but) opposite trends in density and pressure for our implementation of CR in ENZO and SPH results

Thermal and non-thermal traces of AGN feedback: results fromcosmological AMR simulationsF. Vazza^{1,2,3*}, M. Brüggen^{1,2}, C. Gheller⁴

Baseline model of CR from shocks

╋

<u>New features:</u>

- cooling
- Shock-reacc.
- Coulomb & hadronic losses

•AGN feedback: jets (kinetic) quasar (therm.) bubbles(buoy.)

Observed CHANDRA profiles vs cooling/jet/bubbles runs

Observed CHANDRA profiles vs cooling/quasar runs

<u>"Best" models: bubbles - feedback:</u>

- are created as evacuated blobs in pressure equilibrium
- filled with gas (Γ =5/3) or a mixture with CR (Γ_{cr} = 4/3)
- Initial radius $r_{b} = 25 \text{kpc/h}$
- Injected energy $3/2 \text{ PV} \sim 10^{59} \text{ erg per event}$

see also:Bruggen et al. 2005; Sijacki et al.2008 (many others!)

<u>"Best" models: Quasar – feedback:</u>

- Thermal energy output drives a blast wave
- Mach number $\sim 5-10$
- Injected energy ~ 10^{59} - 10^{60} erg per event

see also: McCarthy+04, Sijacki+07, Teyssier+10 (many others!)

<u>"Best" models: Jets - feedback:</u>

- Kinetic energy output from bipolar jets
- Jet velocity ~ 600-800 km/s at 50kpc/h
- Injected energy ~ 10^{59} erg per event

CR pressure

Gas pressure

see also: Gaspari+11, Dubois + 11 (+ many others!)

What is the CR output of each feedback mode?

Profile of CR pressure to thermal pressure in different modes

- pure cooling produces $Pcr \sim nkT$
- AGN feedback increases Pcr/nkT with respect to nonradiative

<u>What is the CR output of each feedback mode?</u> Hadronic collision \rightarrow y-flux (Pfrommer&EnsslinO4) the proton spectrum must be assumed: $\alpha \sim 2.5$ (M ~ 3)

•<u>How much turbulence does each</u> <u>mechanism generate?</u>

We compare with upper limits from Sanders et al.10 (XMM)

The volumetric turbulence from mergers is dominant

jets/AGN/bubbles \rightarrow within core

 $jets \rightarrow anisotropy$

<u>Cosmic ray (protons) from accretion, merger and AGN driven</u> <u>shocks:</u>

→ various "modes" of AGN feedback seem to solve the "cooling flow" problem

→ the different modes can produce nearly identical X-ray (thermal properties), but quite different NT-ones.

→ cooling-flow models are ALWAYS rejected

 \rightarrow 3 times lower FERMI limits for y-flux will limit power/duty cycle of jets/quasar mode

→ upper limits for turbulence <100km/s will limit bubbles density contrast

Why are central radio relics so rare?

F. Vazza^{1,2*}, M. Brüggen¹, R. van Weeren³, A. Bonafede¹, K. Dolag⁴, G. Brunetti²

name	Z	r[kpc]
Coma cluster	0.023	2008
Abell 548b	0.042	693
Abell 548b*	0.042	456
Abell 3376 E	0.0456	845
Abell 3376 W	0.0456	1008
Abell 3667 E	0.055	1459
Abell 3667 W	0.055	1887
Abell 2256	0.059	470
CIZA J0649.3+1801	0.064	802
RXC J1053.7+5452	0.07	981
Abell 2061	0.078	1558
Abell 2255	0.0806	1065
Abell 3365 E	0.093	1079
Abell 3365 W	0.093	777
ZwCl 0008.8+5215 E	0.104	798
ZwCl 0008.8+5215 W	0.104	808
Abell 1664*	0.128	895
Abell 1240 S	0.159	982
Abell 1240 N	0.159	924
Abell 2345 E	0.177	1431
Abell 2345 W	0.177	857
Abell 1612	0.179	894
CIZA J2242.8+5301 N	0.192	1565
CIZA J2242.8+5301 S	0.192	1062
Abell 115	0.197	998
Abell 2163	0.203	1405
Abell 746	0.232	1606
RXC J1314.4-2515 W	0.244	577
RXC J1314.4-2515 E	0.244	937
Abell 521	0.247	692
ZwCL 2341.1+0000 N*	0.27	1198
ZwCL 2341.1+0000 S	0.27	767
Abell 2744	0.308	1501
MACSJ0717.5+3745*	0.555	298
34 clusters $0 \le z \le 0.3$		

Cumulative radial distribution of observed radio relics from the clusters centre

NO relics inside 200 kpc!

"Detectable" radio relics \rightarrow relics catalogue

~Regardless of the assumed model for B(n) and amplification the lack of central relics is naturally explained if they originate from shocks

Radial distribution functions for Simulated radio relics (5 models)

Radio-halos CANNOT be face-on relic (from shocks)

• We studied projection effects for each cluster

 If the relics is seen face-one, we would need a dynamical range of ~100 in radio images to detect emission

 The emission would have a very "flat" spectrum α≈-1

Why are central radio relics so rare?

F. Vazza^{1,2*}, M. Brüggen¹, R. van Weeren³, A. Bonafede¹, K. Dolag⁴, G. Brunetti²

• 1) shocks in the ICM dissipate most of the kinetic energy at R>0.2Rvir

We suggest that:

2) geometry makes the probability of seeing a relics *projected* onto the centre very small, <1%

3) a relic seen face-on is too dim to be detected (Flux_{face-on} < 0.01-01 Flux_{edge-on})

Work in progress: VLA observation of Abell1497 (z=0.11) (FV, Bonafede, Bruggen in prep..)

<u>A1497:</u> z=0.11 Lx ~3 10⁴⁴ erg/s

<u>Radio observation:</u> VLA Array D Observing time = 10 hr

A1497 with Chandra

(dirty image)

Work in progress: VLA observation of Abell1497 (z=0.11) (FV, Bonafede, Bruggen in prep..)

<u>A1497:</u> z=0.11 $Lx \sim 3 \ 10^{44} \ erg/s$

<u>Radio observation:</u> *VLA Array D Observing time = 10 hr Noise ~70µJ/beam*

A1497 with Chandra

(image after cleaning...preliminary)

Work in progress: VLA observation of Abell1497 (z=0.11) (FV, Bonafede, Bruggen in prep..)

CIZA J2242.8+5301

A1497

Real map Map in Fourier space relics/halos/radio galaxies

SIMULATED RadIO

(IMAGES)

Initial VLA configuration

t=10 hours

SIMULATED RadIO

(IMAGES)

• Realistic mock radio images (hopefully)

Can process any
2D image from sim.

• Test models under realistic conditions

 Useful for proposal (hopefully)

<u>A1497:</u>

