

Magnetisation of Interstellar and Intergalactic Media

Max-Planck-Institut für Radioastronomie

The Magnetic field in M31

René Gießübel

Mainz, 10.7.2012

Rainer Beck, Elly Berkhuijsen, George Heald, Andrew Fletcher

WANTED BRIGHT OR DEPOLARIZED

THE MAGNETIC FIELD OF M31 AT 350,000,000 HZ

"Howdy, stranger!"

short introduction

Max-Planck-Institut für Radioastronomie

infrared: ESA/Herschel/PACS/SPIRE/J. Fritz, U. Gent; X-ray: ESA/XMM-Newton/EPIC/W. Pietsch, MPE; optical: R. Gendler

M31 at 6 cm (Effelsberg)

Max-Planck-Institut für Radioastronomie

M31 6cm Total Intensity + B-Vectors (Effelsberg 100-m)

M31 6cm Polarized Intensity + B-Vectors (Effelsberg)

Copyright: MPIfR Bonn (R.Giessuebel & R.Beck)

Effelsberg 6 cm/4850 MHz HPBW: 156" rms (I, PI): 290, 55 µJy/beam Field: 140'x80'

polarized "ring" m=0 mode dominant R. Beck (1982)

The magnetic field of M31

Dynamo at work

Max-Planck-Institut für Radioastronomie

non-zero pitch angles axis-symmetric <u>spiral</u> field

hint for a dynamo (m=0 mode)

RM map: regular field

→ dynamo

new RM map (11cm,6cm), contours: 6cm Effelsberg (11cm from David Mulcahy)

M31 at 92 cm Westerbork Observation

Max-Planck-Institut für Radioastronomie

Summary:

Observation date: December 2008

mosaic of 2 fields 24h on each field over 4 days

8 x 128 channels 310-390 MHz ChanWid (kHz): 78.125 TimeInt (s): 60

M31 at 92 cm **Total Power**

Max-Planck-Institut für Radioastronomie

HPBW: 300", rms: 0.014 Jy/beam

RM map of the sources

Max-Planck-Institut für Radioastronomie

Right Ascension (J2000)

"foreground map" (handle with care)

Max-Planck-Institut für Radioastronomie

Right Ascension (J2000)

comparison of RM with literature values

comparison of RM with literature values

where are the bad guys?

RM Source Catalog depolarization of the sources

Max-Planck-Institut für Radioastronomie

j i luii / luy

Faraday spectra of deviating sources

Faraday spectra of deviating sources

Faraday spectra of "normal" sources

WANTED BRIGHT OR DEPOLARIZED

THE MAGNETIC FIELD OF M31 AT 350,000,000 HZ

Max-Planck-Institut für Radioastronomie

slice along the "ring"

Max-Planck-Institut für Radioastronomie

position of the ellipses

"PI peak map"

There it is! an upper limit

Histograms of the ellipses

 $PI_{max} = 1.5 \text{ mJy/beam}$

$$p_{max} = 1.7\%$$

$$DP_{min}(90/6) = (PI_{90}/PI_{6})(v_{6}/v_{90})^{\alpha} = 0.03$$

Max-Planck-Institut für Radioastronomie

Burn (1966); Sokoloff et al. (1998)

$$DP_{int} = \frac{1 - \exp(-S)}{S}$$
$$DP_{ext} = \exp(-S)$$

$$S = 2\sigma_{RM}^2 \lambda^4$$

$$\sigma_{RM}^2 = (0.81 n_e B_{turb} d)^2 \frac{fL}{d}$$

electron density $n_e = 0.06 \text{ cm}^{-3}$ turbulent magnetic field $B_{turb} = 5 \mu G$ synchrotron scale height $h_{syn} = 200 \text{ pc}$ turbulent scale d = 50 pcfilling factor f = 0.2Fletcher et al (2004)

Max-Planck-Institut für Radioastronomie

 $DP_{int} = \frac{1 - \exp(-S)}{S}$ $DP_{ext} = \exp(-S)$

$$S = 2\sigma_{RM}^2 \lambda^4$$

$$\sigma_{RM}^2 = (0.81 n_e B_{turb} d)^2 \frac{fL}{d}$$

electron density $n_e = 0.06 \text{ cm}^{-3}$ turbulent magnetic field $B_{turb} = 5 \mu G$ path length L = 1.9 kpcturbulent scale d = 50 pcfilling factor f = 0.2

Fletcher et al (2004)

@ 350 MHz:

DP = 0.0008 p = 0.05 %

measured: DP_{min}(90/6)=0.03 p_{max} = 1.7%

Max-Planck-Institut für Radioastronomie

@ 350 MHz:

$$DP_{int} = \frac{1 - \exp(-S)}{S}$$
$$DP_{ext} = \exp(-S)$$

Tribble (1991)

 $S = 2\sigma_{RM}\lambda^2$

$$\sigma_{RM}^2 = (0.81n_e B_{turb}d)^2 \frac{fL}{d}$$

 $S = 2\sigma_{RM}^2 \lambda^4$

electron density $n_e = 0.06 \text{ cm}^{-3}$ turbulent magnetic field $B_{turb} = 5 \mu G$ path length L = 1.9 kpcturbulent scale d = 50 pcfilling factor f = 0.2

Max-Planck-Institut für Radioastronomie

electron density $n_e = 0.06 \text{ cm}^{-3}$ turbulent magnetic field $B_{turb} = 5 \mu G$ path length L = 1.9 kpcturbulent scale d = 50 pcfilling factor f = 0.2

Max-Planck-Institut für Radioastronomie

electron density $n_e = 0.06 \text{ cm}^{-3}$ turbulent magnetic field $B_{turb} = 5 \mu G$ path length L = 1.9 kpcturbulent scale d = 50 pcfilling factor f = 0.2

Max-Planck-Institut für Radioastronomie

electron density $n_e = 0.06 \text{ cm}^{-3}$ turbulent magnetic field $B_{turb} = 5 \mu G$ path length L = 1.9 kpcturbulent scale d = 50 pcfilling factor f = 0.2

DP = 0.02 p = 1.4 % measured: DP_{min}(90/6)=0.03 $p_{max} = 1.7\%$

Summary implications for LOFAR

Summary implications for LOFAR

Summary implications for LOFAR

- quite a number of polarized sources
- many have same RM as at GHz
- higher resolution may help
- M31 is highly inclined

Summary implications for LOFAR

- quite a number of polarized sources
- many have same RM as at GHz
- higher resolution may help
- M31 is highly inclined

- high depolarization
- M31 not seen in RM cube
- lot of sources have different RM
- less sources than expected (needed)

Summary implications for LOFAR

- quite a number of polarized sources
- many have same RM as at GHz
- higher resolution may help
- M31 is highly inclined

- high depolarization
- M31 not seen in RM cube
- lot of sources have different RM
- less sources than expected (needed)

- LOFAR: factor 4 in wavelength higher (things get worse with λ^2)
- RM-grid: need to know and understand source structure

Max-Planck-Institut für Radioastronomie

to be continued ...