

Henrik Junklewitz, Mike Bell and Torsten Enßlin

Max-Planck-Institut für Astrophysik Mainz, Juli 10, 2012, Annual Meeting DFG Research Unit

Max-Planck-Institut für Astrophysik

Henrik Junklewitz, Mike Bell and Torsten Enßlin

Max-Planck-Institut für Astrophysik Mainz, Juli 10, 2012, Annual Meeting DFG Research Unit

Max-Planck-Institut für Astrophysik

Abell 3667: 20 cm + Rosat X-Ray

Abell 3667: 20 cm + Rosat X-Ray

Abell 3667: 20 cm + Rosat X-Ray

Abell 3667: 20 cm + Rosat X-Ray

Multi-frequency synthesis

Multi-frequency synthesis (MFS):

Technique of using measurements from several frequencies for aperture synthesis imaging.

(Conway et al. 1990)

Multi-frequency synthesis Spectral structure

Multi-frequency synthesis

uv - coverage

Improved uv-coverage: $u = b/\lambda$

Multi-frequency synthesis

uv - coverage

Multi-frequency synthesis

uv - coverage

Multi-frequency synthesis

uv - coverage

Multi-frequency synthesis

uv - coverage

7020 *24 = 168480 datapoints

New Instruments

Broad-Band interferometers:

new generation of radio interferometers provide tremendously increased bandwidth.

New Instruments

Broad-Band interferometers:

new generation of radio interferometers provide tremendously increased bandwidth.

EVLA up to 8 GHz bandwidth

New Instruments

Broad-Band interferometers:

new generation of radio interferometers provide tremendously increased bandwidth.

EVLA

up to 8 GHz bandwidth

LOFAR

32 (48) MHz bandwidth per station beam at very low frequencies

New Instruments

Broad-Band interferometers:

new generation of radio interferometers provide tremendously increased bandwidth.

EVLA

up to 8 GHz bandwidth

32 (48) MHz bandwidth per station beam at very low frequencies

LOFAR

ASKAP

300 MHz bandwidth

Standard Methodology

Standard Methodology

Current status:

• Imaging of diffuse fields: CLEAN

Standard Methodology

Current status:

Imaging of diffuse fields: CLEAN and MEM

Standard Methodology

Current status:

 Imaging of diffuse fields: CLEAN and MEM and recently MS-CLEAN (Cornwell ,2008)

Standard Methodology

- Imaging of diffuse fields: CLEAN and MEM and recently MS-CLEAN (Cornwell ,2008)
- MFS with Double Deconvolution (DD), (Conway et al. 1990)

Standard Methodology

- Imaging of diffuse fields: CLEAN and MEM and recently MS-CLEAN (Cornwell ,2008)
- MFS with Double Deconvolution (DD), (Conway et al. 1990)
- MFS with MF-CLEAN, (Sault et al. 1994)

- Imaging of diffuse fields: CLEAN and MEM and recently MS-CLEAN (Cornwell ,2008)
- MFS with Double Deconvolution (DD), (Conway et al. 1990)
- MFS with MF-CLEAN, (Sault et al. 1994)
- Diffuse imaging and MFS: MF-MS CLEAN (Rau et al. 2011), implemented in CASA

Standard Methodology

Problems?

- Imaging of diffuse fields: CLEAN and MEM and recently MS-CLEAN (Cornwell ,2008)
- MFS with Double Deconvolution (DD), (Conway et al. 1990)
- MFS with MF-CLEAN, (Sault et al. 1994)
- Diffuse imaging and MFS: MF-MS CLEAN (Rau et al. 2011), implemented in CASA

Current Methods for MFS

Problems!

Current status:

• Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.

Current Methods for MFS

Problems!

- Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.
- Unused correlation information between pixels and frequencies.

Current Methods for MFS

Problems!

- Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.
- Unused correlation information between pixels and frequencies.
- Assumptions are not optimally chosen for all cases.

Current Methods for MFS

Problems!

Current status:

- Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.
- Unused correlation information between pixels and frequencies.
- Assumptions are not optimally chosen for all cases.

• No consistent error estimation.

New Method

Solutions

Our proposal:

- Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.
- Full I(l, m, v) over all frequencies.
- Unused correlation information between pixels and frequencies.
- Assumptions are not optimally chosen for all cases.

• No consistent error estimation.

New Method

Solutions

Our proposal:

- Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.
- Full I(l, m, v) over all frequencies.
- Unused correlation information between pixels and frequencies.
- Consistent use of full information.
- Assumptions are not optimally chosen for all cases.

• No consistent error estimation.

New Method

Solutions

Our proposal:

- Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.
- Full I(l, m, v) over all frequencies.
- Unused correlation information between pixels and frequencies.
- Consistent use of full information.
- Assumptions are not optimally chosen for all cases.
- Optimal assumptions for diffuse signal fields.
- No consistent error estimation.

New Method

Solutions

Our proposal:

- Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.
- Full I(l, m, v) over all frequencies.
- Unused correlation information between pixels and frequencies.
- Consistent use of full information.
- Assumptions are not optimally chosen for all cases.
- Optimal assumptions for diffuse signal fields.
- No consistent error estimation.
- Error estimate for free.

Bayesian Approach New Method Solutions

Our proposal:

- Expansions of I(l, m, v) \longrightarrow full bandwidth can't be used.
- Full I(l, m, v) over all frequencies.
- Unused correlation information between pixels and frequencies.
- Consistent use of full information.
- Assumptions are not optimally chosen for all cases.
- Optimal assumptions for diffuse signal fields.
- No consistent error estimation.
- Error estimate for free.

Response

$$Rs = S(u, v) \mathcal{FT}\left[B(l, m) I(l, m, v_0) \left(\frac{v}{v_0}\right)^{-\alpha}\right]$$

Signal reconstruction

$$map = \langle s \rangle_{\mathcal{P}(s|d)}$$

- Simultaneously for both signals
- Using interative algorithms

Wiener Filter

$$map = \langle s \rangle_{\mathcal{P}(s|d)} = Dj$$

- Gaussian signal prior
- Gaussian noise
- Gaussian posterior with covariance D
- $j \sim \text{noise weighted data}$

Simulated VLA - observation of a Gaussian signal field

- VLA-A-configuration
- 24 frequencies between 1 4 GHz
- 7020 visibility points per frequency
- Low noise
- No primary beam
- Spectral index assumed to be known
- Spatial correlation structure assumed to be known as well

Simulated observation

Dirty beam at reference frequency

Simulated observation

...and using the full mfs-uv coverage

Simulated observation

Spectral index signal

Simulated observation

Total intensity signal

Simulated observation

Signal reconstruction using all frequencies

Dirty image at reference frequency

Simulated observation

Signal reconstruction using all frequencies

Simulated observation

MS-MF-CLEAN image with CASA

Signal

Dirty image

Simulated observation with low noise and no pimary beam

Signal reconstruction

MF-MS-CLEAN

Signal

Dirty image

Simulated observation with high noise and pimary beam

Signal reconstruction

MF-MS-CLEAN

Outlook

Gaussian signal fields?

(Oppermann et al. 2012)

Faraday all sky map

(Haslam et al. 1982)

408 MHz

Outlook

More realistic signal priors

Outlook

More realistic signal priors

Conclusions

- New, fully Bayesian approach to MFS and imaging of diffuse fields
- Allows to make full use of modern broadband data
- First Results on mock data : WF
- Next step: reconstruction of total intensity and spectral structure simultaneously