A new view of magnetic fields: Faraday caustics and Faraday Synthesis

Michael Bell – MPA Garching with Torsten Enßlin and Henrik Junklewitz

Max-Planck-Institut für Astrophysik

Faraday Rotation

$$\chi = \chi_0 + \varphi \lambda^2$$

polarization angle

$$\varphi \propto \int_{here}^{there} dz \, n_e B_z$$

Faraday depth

Michael Bell - DFG Anual Meeting - Mainz

Michael Bell - DFG Anual Meeting - Mainz

depth

Faraday

spectrum

RM Synthesis see Brentjens & de Bruyn (2005)

RM Synthesis see Brentjens & de Bruyn (2005)

Faraday Caustics

Singularities in the Faraday spectrum and their utility as probes of magnetic field properties

Optical caustics

Faraday Caustics

Michael Bell - DFG Anual Meeting - Mainz

Michael Bell - DFG Anual Meeting - Mainz

Statistics

300 to 900 MHz similar to the low frequency portion of the GMIMS survey

Faraday Synthesis The synergy of aperture and rotation measure synthesis

10 July, 2012

Michael Bell - DFG Anual Meeting - Mainz

Faraday synthesis

$$PSF_{3D} \stackrel{?}{=} PSF_{sky} * PSF_{RM}$$

3D Dirty Beam Image plane, Faraday depth = 0 rad/m²

3D Dirty Beam Image plane, Faraday depth = 50 rad/m²

3D Dirty Beam Faraday depth axis, phase center

3D Dirty Beam Faraday depth axis, off-center

Mock Observations

30 point sources random locations random fluxes (0.06 - 64 Jy)

> "observed" with the VLA 1-4 GHz (x64 channels)

Gaussian white noise, ~10Jy

Model

Aperture + RM Synthesis

Faraday synthesis

Model

Why the artifacts? 1D Dirty image

Right Ascension

Why the artifacts? Cleaning a single frequency

Why the artifacts? After combining multiple frequencies

Why the artifacts? After combining multiple frequencies

Flux recovery

de Bruyn & Brentjens (2005)

Information Field Theory Extended critical filter and more...

www.mpa-garching.mpg.de/ift

Faraday Caustics Summary

Strong "spikes" in Faraday spectra
Mark reversals of LOS B-field
Are sheets in 3D Faraday spectrum
Reveal properties of magnetic turbulence

Faraday synthesis summary

- Improves upon aperture + RM synthesis
 - Better fidelity
 - Less noise and better noise statistics
 - Higher resolution
 - Computationally cheaper (in principle)
- Provides a solid framework for building 3D imaging algorithms
- Being considered for POSSUM & CHANGES

Thank you!

Faraday caustics: Singularities in the Faraday spectrum and their utility as probes of magnetic field properties Bell, Junklewitz & Enßlin, A&A 535, A85 (2011)

Faraday synthesis: The synergy of aperture and rotation measure synthesis Bell & Enßlin A&A 540, A80 (2012)

Michael Bell - DFG Anual Meeting - Mainz