ISM models with SN driven turbulence

Abhijit Bendre Detlef Elstner Oliver Gressel

Leibniz Institute for Astrophysics

Outline

- ISM simulations with SNE
- Dynamo models until saturation
- SNR dependence
- Explaining the saturation

Introduction

- ISM consists of
- i) Many gaseous phases
- ii) Magnetic field (few μ G)
- iii) Cosmic rays
- Heating and cooling
- ISM turbulence = mainly contributed by SN II (isolated and clustered)
- Energy of SN II explosion : 1.14x10⁵¹ erg

Simulation box

xy plane: 0.8 kpc x 0.8 kpc (96x96 grid cells) Vertical size z: -2 kpc to 2 kpc (512 grid cells)

Modeling

- Density stratification
- Rotational shear is included (shearing periodic boundary conditions)
- Radiative cooling function
- SN explosions as localized injections of thermal energy
- SN explosions frequency,

 $\sigma_{\text{SN-I}}$ = 4 myr⁻¹ kpc⁻², $\sigma_{\text{SN-II}}$ = 30 myr⁻¹ kpc⁻²

Dependence on the seed fields

- Azimuthal seed fields (Gressel O.)
- Vertical seed fields
- i) With and without flux
- ii) Strong and weak initial field strength

IGM magnetic fields < 1e⁻⁸G

- Vertical flux passing through the disk of galaxy
- May influence MRI
- May influence dynamo action

Evolution of magnetic energy

Dependence on the seed fields

- Growth times of E_{MAG} for all models are same in the initial growing region (except the strong field models)
- Strong field vertical flux model is in the over equipartition regime and E_{MAG} Saturated
- Strong field zero flux model still in the growth phase

Properties of the ISM

B Azimuthal evolution

SNR Dependence

- For week field strength with vertical flux
- Three models with different SNR (calculated until E_{MAG.} saturates)
- Seed field : $B_z = 1 \times 10^{-3} \mu G$, (Flux $10^{39} \mu G cm^2$)
- Growth times of $E_{\rm MAG.}$ are same in the initial growing phase (200 Myr)
- Total magnetic energy is $4x10^{51}$ erg for all SNR

	VWQ	VWH	VWF
SNR (%) (times σ)	25%	50%	100%
E _{mag} :E _{kin} (final)	2.3	1.1	0.4

B azimuthal Vs. Z, Profiles evolution

Maximum |B|

B_y Profiles (SNR dependence)

Final field strengths are inversely proportional to SNR

Saturation

Alpha quenching or/and Wind quenching

Alpha Quenching (25% SNR)

Alpha Quenching (50% SNR)

Alpha Quenching (100% SNR)

Saturation Process

- Magnetic energy gets saturated at equal magnitude for all SNE rates, (4x10⁵¹ erg)
- Quenching of wind and alpha profile -> dynamo stops
- In the last model with 100% SNR wind did not quench

Why?

Mass transport Vs. density distribution

Volume filling fraction (25% & 100% SNR)

May be due to the relatively broader density distribution

Summary

- Magnetic energy saturates at the equal magnitude, irrespective of the seed fields and SNE frequency
- Growth rates are almost equal for all SNR (in the initial growing phase)
- Absolute value of the mean magnetic field decrease with increasing SNR
- $\alpha_{R\varphi}$ and $\alpha_{\varphi\varphi}$ profiles are quenched in the saturated region
- $\alpha_{R\varphi}/\alpha_{\varphi\varphi} = 4$ for all SNR (Elstner D. , Gressel O.)
- Except the 100% SNR model, wind is also quenched in all other models
- Wind may have quenched due to the relatively narrow distributions of density in the mid planes

Outlook

- Models with higher resolution
- Larger box sizes
- Cosmic Rays

Saturated energies

Model	Final energy (erg)	Kinetic energy (erg)
Strong field vertical flux (25%)	4x10 ⁵¹	2x10 ⁵¹
Strong field zero flux (25%)	Growing phase	2x10 ⁵¹
Weak field vertical flux (25%)	4x10 ⁵¹	2x10 ⁵¹
Weak field zero flux (25%)	Growing phase	2x10 ⁵¹
Weak field vertical flux (50%)	4x10 ⁵¹	4x10 ⁵¹
Weak field vertical flux (100%)	4x10 ⁵¹	10x10 ⁵¹
Azimuthal and radial fields (25%)	Growing phase	2x10 ⁵¹

Radiative cooling function

- Modeling of SNE via thermal energy injections
- Necessary to include radiative cooling function
- Adopted as piecewise power law

 $\Lambda(T) = \Lambda_i T^{\beta_i}, \quad \text{for } T_i \le T < T_{i+1}.$

• Thermally unstable range 141K to 6102K

By maximum evolution 25%

By maximum evolution 50%

By maximum evolution 100%

Equilibrium curve and cooling function

$$\lambda_{\rm F} = 2\pi \left[\frac{\varrho^2 \Lambda}{\kappa T} (1 - \beta) \right]^{-1/2}$$

Pm = 2.5
$$\eta = 0.2 \times 10^{25} \, {\rm cm}^2 {\rm s}^{-1}$$

$$\Gamma(z) = \Gamma_0 \times \begin{cases} e^{-\frac{z^2}{2z_0 H_{\Gamma}}} & \text{if } |z| \le z_0 \\ e^{\frac{z_0}{2H_{\Gamma}}} \left(e^{-\frac{z}{H_{\Gamma}}} + 10^{-5} \right) & \text{otherwise,} \end{cases}$$

$$H_{\Gamma} = 300 \,\mathrm{pc}$$
 and choose $z_0 = H_{\Gamma}/5$.
 $\Gamma_0 = 0.015 \,\mathrm{erg} \,\mathrm{s}^{-1}$

photoelectric heating and ionising radiation from OB stars.

Joung & Mac Low (2006)

 $\Lambda_i \,[\,{\rm erg}\,\,{\rm s}^{-1}\,{\rm g}^{-2}\,{\rm cm}^3\,{\rm K}^{-\beta_i}]$ T_i [K] β_i 3.420×10^{16} 2.1210141 9.100×10^{18} 1.00 1.110×10^{20} 3130.56 1.064×10^{10} 6102 3.21 10^{5} 1.147×10^{27} -0.20 2.290×10^{42} 2.88×10^{5} -3.00 4.73×10^{5} 3.800×10^{26} -0.22 $1.445{ imes}10^{44}$ 2.11×10^{6} -3.00 $3.98{ imes}10^6$ 1.513×10^{22} 0.33 2.00×10^{7} 8.706×10^{20} 0.50

 $\Lambda(T) = \Lambda_i T^{\beta_i}$

Sánchez-Salcedo, Vázquez-Semadeni & Gazol (2002)

Koyama & Inutsuka (2004)

Flux dependence

	M1	M3	M7	M7a	Gressel
Time (Gyr)	1.2	1.6	2.5	2.5	1.9
Flux (µGcm²)	0	1041	10 ³⁹	0	0
SN rate (%)	25%	25%	25%	25%	25%
B _{seed} (μG)	0.1	0.1	0.001	0.001	0.001 (B _y)
Growth time (Myr)	308	420	200	191	254
E _{mag} : E _{kin} (final)	0.4	1.3	2.3	0.5	0.6
 U (µG)	-0.3	-1.8	-1	0.3	0.07
 L (µG)	0.9	1.8	-1	0.07	0.3
B _{mean} : B _{rms}	1.5	2	2	2.4	1.7

SNR dependence

	M7	M71	M72
Time (Gyr)	2.5	1.8	1.5
Flux (µGcm²)	10 ³⁹	10 ³⁹	10 ³⁹
SN rate (%)	25%	50%	100%
B _{seed} (μG)	0.001	0.001	0.001
Growth time (Myr)	200	190	179
E _{mag} :E _{kin}	2.3	1.1	0.4
 U (µG)	-1	0.6	0.3
<Β> L (μG)	-1	0.6	0.3
B _{mean} : B _{rms}	2	1.7	1

Vertical wind

My71

My72

Vertical wind (SNR dependence)

Model equations

$$\partial_{\tau} \rho + \nabla \cdot \mathbf{\Phi} \mathbf{v} = 0$$

$$\partial_{t} \mathbf{E} \mathbf{F} \nabla \cdot \mathbf{e} + p^{*} \mathbf{v} - \mathbf{E} \mathbf{E} \mathbf{E} = 2\mathbf{\Omega}^{2} \mathbf{q} \mathbf{x} \mathbf{E} \cdot \mathbf{v} \mathbf{F} \mathbf{\Omega} \mathbf{g}(z) \mathbf{E} \cdot \mathbf{v} + \nabla \cdot \mathbf{v} \mathbf{F} \mathbf{v} + \eta \mathbf{E} \mathbf{F} \mathbf{x} \nabla \mathbf{T} + \nabla \cdot \mathbf{v} \mathbf{v} + \eta \mathbf{E} \mathbf{F} \mathbf{x} \nabla \mathbf{T} + \Gamma_{SN} - \rho^{2} \Lambda \mathbf{E} \mathbf{F} \rho \Gamma \mathbf{E}$$

 $\partial_t \mathbf{B} - \nabla \times \langle \mathbf{V} \times \mathbf{B} - \eta \nabla \times \mathbf{B} \rangle = \bar{\mathbf{0}}$

Where,
$$p^* = p + \frac{B^2}{2}$$

Thermal energy,
$$\varepsilon = e - \rho \frac{v^2}{2} - \frac{B^2}{2}$$

Viscous stress tensor,
$$\tau = \tilde{v} \, \left(\overline{\nabla} \otimes \overline{v} \right)^T - \frac{2}{3} (\overline{\nabla} \cdot \overline{v})_{\perp}$$

Shear parameter,
$$q = \frac{d \ln \Omega}{d \ln R} = -1$$

Mean |B|

Maximum |V_A|

Mean |V_x|

