M82 A radio continuum and polarisation study

RUB

Björn Adebahr

Marita Krause, Uli Klein, Marek Wezgowiecz, Dominik Bomans, Ralf-Jürgen Dettmar FAKULTAT FÜR PHYSIK UND ASTRONOMIE Astronomisches Institut

Total Intensity

Björn Adebahr | DFG Annual Meeting 2012 | Mainz | 11-07-2012

Adebahr et al. In prep.

Scaleheights

Average scaleheights: 1st comp.: 85 pc 2nd comp.: 420 pc (South) 750 pc (North)

Lower than the reference values for spiral galaxies (Dumke & Krause 1998): 300 pc (thin disk) 1.8 kpc (thick disk) I.8 kpc (thick disk) Something must be different here!

Spectral Index

Adebahr et al. In prep.

Asymmetry and absorption

Free-free absorption visible in several supernova remnants and HII-regions

RUB

Ionisation, absorption and opacity

Free-free absorption important in the core region, but not in the

halo!

Total magnetic field strength

Adebahr et al. In prep.

Geometry and SI for Beck's equation important

Magnetic field average: Beck & Krause (2005): 35 µG Thompson et al. (2007): 1.13 mG

Magnetic field in the core: Beck & Krause (2005): 98 µG

Magnetic field in the halo: Beck & Krause (2005): 24 µG

Cosmic ray electron losses

	B _{core} = 98 μG	B _{halo} = 24 μG	
E (GeV)	0.94	1.90	
т _{syn}	9.21·10 ⁵ yrs	7.62·10 ⁶ yrs	
т _{IC}	$4.66 \cdot 10^4 \text{yrs}$	2.68·10 ⁵ yrs	
T _{brems}	1.60·10 ⁵ yrs	6.90 [.] 18 ⁸ yrs	T
T _{ion}	$3.57 \cdot 10^4$ yrs	3.12·10 ⁸ y/s	
т _{аd}	2.20·10 ⁶ yrs	2.20·10 ⁶ yrs	
T _{cool}	$4.43 \cdot 10^4$ yrs	2.59·10 ⁵ yrs	
T _{esc}	1.17·10 ⁵ yrs	1.12.10 ⁶ yrs	-
тп	$2.00 \cdot 10^5 \text{ yrs}^{-1}$	8.62 10 ⁸ yrs	

Ionisation and IC losses are dominating the core region

Pion decay plays a role in the core region (Proton calorimeter?)

IC losses are still dominant in the halo

Cosmic ray electrons cannot

escape the core region and the galaxy

RUB

Transport of cosmic rays into the halo

Magnetic field is coupled to the ionised medium and transported out!

A revised picture of the outflow mechanism

Polarisation and B-Field at short wavelengths

Magnetic field parallel to the major axis in the western part due to shocks from supernovae

HII regions in the eastern part do not produce regular fields

B-Field at 18cm/22cm

Adebahr et al. In prep.

Summary and Outlook

Conclusions

- Ionisation losses in star-forming regions important
- Radio halo produced by older starburst periods
- Magnetic field is completely coupled to the ionised medium
- Supernovae produce shocks and regular B-Field
- Small-scale dynamo may be important in the halo

Future Work

- Closer look to the RM-cube
- Calculate magnetic field strength of the northern outflow with RMs and compare to energy equipartition
- Propose new observations for WSRT and LOFAR for lower frequencies
 - \rightarrow more constrains on loss processes and magnetic field strength in the halo