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1. Introduction
Flows in nature have the tendency to become disorderly or turbulent
Generation of turbulence by a grid. The Reynolds number is 1500, based on the 1-inch mesh size.
Instability of the shear layers leads to turbulence downstream (Fig. 152 in van Dyke 1982).
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Turbulence requires a continuous supply of energy from

• instabilities of a laminar flow (e.g., shear instability, magneto-rotational instability in accretion discs);

• buoyancy, convection, etc.;

• external forces, e.g., supernova explosions in the ISM;

• · · ·

Significance of turbulence:

• augments molecular transport and causes mixing within the fluid;

• energy transfer from the large scales of motion: enhanced viscosity, heat transfer, magnetic
diffusion;

• generation of coherent structures (flow structures, large-scale magnetic fields via dynamo)
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2. An irreducibly short introduction
to random functions

Turbulent flows are random
⇒ velocity ~v, pressure p, magnetic field ~B, density ρ are random functions of position ~x and time t

• A(x) is called a random function of the variable x if A(x) is a random variable for any value x.

• The average 〈A〉 of A(x): A = 〈A〉 + a , 〈a〉 = 0 .

• The variance σ2
A of A(x): σ2

A = 〈(A− 〈A〉)2〉 ≡ 〈a2〉 .

• σA: the standard deviation (or the r.m.s. value) of A.
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• The autocorrelation function of A(x), a measure of relation between neighbouring fluctuations:

C(x1, x2) = 〈a(x1)a(x2)〉
= 〈(A(x1)− 〈A〉)(A(x2)− 〈A〉)〉 ,

where 〈A〉 can depend on x.

C(x, x) = σ2
A , C(x1, x2)→ 0 for |x1 − x2| → ∞ .

• The structure function of A(x):

D(x1, x2) = 〈[a(x1)− a(x2)]2〉 .

• The cross-correlation function of A1(x) and A2(x):

B(x1, x2) = 〈a1(x1)a2(x2)〉
= 〈(A1(x1)− 〈A1〉)(A2(x2)− 〈A2〉)〉 ,

6



• Ensemble, volume, time averaging:

ergodic random functions are those whose statistical properties obtained by averaging a set of its
realizations (ensemble averages) are, with unit probability, equal to those obtained by averaging
a single realization for a sufficiently long interval of time (time averages) or a sufficiently large
region (volume averages).

• A random function A(x) is called stationary if its mean value and variance are independent of x.

– Stationary random functions are ergodic
because different realizations have identical statistical properties.

– Correlation properties of a stationary random function can be obtained from its single
realization.

– For stationary random functions, with δx = x1 − x2:

C(x1, x2) = C(δx) , B(x1, x2) = B(δx) ,

D(x1, x2) = D(δx) = 2〈a2〉 − 2〈a1a2〉 = 2[σ2
A − C(δx)]

D(δx) can be calculated from observations or numerical results more accurately and with less computations
than C(δx).

– The correlation length: l0 =
1

σ2
A

∫ ∞
0
C(δx) d(δx) .
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• Power spectrum (or power spectral density): the Fourier transform of the autocorrelation function,

P (k) =
∫ ∞
−∞C(x)e−ikx dx , C(x) =

1

2π

∫ ∞
−∞ P (k)eikx dk .

In 3D, P (~k) =
∫
V
C(~x)e−i

~k·~x d3~x is called the 3D spectrum,

the energy spectrum E(k) is obtained by averaging over all directions in the k-space.

In the isotropic case, P (~k) = P (k),

E(k) dk =
1

4π

∫ π
0

sin θ dθ
∫ 2π

0
dφP (k) k2 dk ⇒ E(k) = k2P (k) .
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Note on correlation vs. statistical dependence

Cross-correlation: B12(x1, x2) = 〈a1(x1)a2(x2)〉 .

• Positive correlation, B12 > 0: a1 large where a2 is large.

• Anticorrelation, B12 < 0: a1 is large where −a2 is large.

• No correlation: B12 = 0 ⇒ A1(x) and A2(x) are uncorrelated.

Statistically independent random functions: their joint probability density is equal to the product of
their respective probability densities, p(A1, A2) = p1(A1)p2(A2).

• Statistically independent functions are uncorrelated: B12 = 〈a(x1)〉 〈b(x2)〉 = 0 .

Contours of joint probability density p(u, v) for random variables u, v that are:

anticorrelated uncorrelated correlated

9



Contours of joint probability density p(u, v) for random variables u, v that are:

anticorrelated uncorrelated correlated

Uncorrelated functions are not necessarily statistically independent.

Contours of p(u, v) for uncorrelated u, v that tend to inhibit
each other, and so are statistically dependent on each other:
u and v are seldom large (or small) simultaneously.

Question: How can one recognise a factorised function f (x, y) = g(x)h(y) from a plot of its
contours, f (x, y) = const?
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3. Phenomenology of fluid turbulence

The The Navier–Stokes equation

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p + ν∇2~v ,

known since 1823, probably contains all of turbulence (and much more),
but the nature of turbulence remains one of the most important unsolved problems in physics.

Notation:

~v = ~V + ~u = velocity,

〈~v〉 = ~V = mean velocity;

ρ = density;

p = pressure;

ν = kinematic viscosity;

~B = ~B0 + ~b = magnetic field,

〈~B〉 = ~B0 = mean magnetic field;

~VA =
~B√
4πρ

= the Alfvén velocity.
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Spectral energy transfer by nonlinear interactions

From a single Fourier mode v = sin kx, the nonlinear term produces another mode:

(~v · ∇)~v = v
∂

∂x
v = k sin(kx) cos(kx) ∝ sin(2kx) ,

so the intertia force drives small-scale motions, i.e., transfers kinetic energy to smaller and smaller
scales, from wavenumber k to 2k, then from 2k to 4k, etc.,

resulting in the energy cascade in the k-space towards small scales:

Flow complexity increases with the range of scales involved v =
N−1∑
n=0

k−1/3
n sin(2π knx) , kn = 2n

N = 1 N = 2 N = 3 N = 4
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∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p + ν∇2~v ,

The cascade extends over a broad range of k if viscosity is small:

|(~v · ∇)~v| � |ν∇2~v| ⇒ kv2 � νk2v ⇒ Re =
lv

ν
� 1 ,

where l = 2π/k is the wavelength (or scale) of the motion,

i.e., the Reynolds number Re must be large for a large number of scales to be involved in the motion,
as observed in turbulent flows.

Free shear layers become turbulent when Re >∼ (3–5)× 103.

In the cool ISM, Re ' 105–107 (Elmegreen & Scalo, 2004a)

⇒ expect the ISM to be turbulent IF only there are suitable forces to drive the turbulence.
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3.1. Kolmogorov’s spectrum

Incompressible, homogeneous, isotropic fluid turbulence

Spectral description of the turbulent energy cascade:

• E = 1
2v

2
0 =

∫ ∞
0
E(k) dk , specific kinetic energy, [E ] = cm2/s2 .

• E(k) dk = 1
2v

2(k)
dk

k
= 1

2v
2(k) d(ln k) = spectral energy density

(or kinetic energy spectrum, or specific kinetic energy per unit interval of ln k).

• v0 =
√

2E , the r.m.s. velocity.

• v(k) =
√

2kE(k) , velocity at wavenumber k , [E(k)] = cm3/s2 .
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Kinetic energy is conserved in the turbulent cascade at scaels where viscosity is still negligible
⇒ all the energy arriving to k is transferred to larger k
⇒ energy transfer rate along the spectrum is independent of k:

v2(k)

τ
= ε ,

ε = const, energy transfer rate ,

τ = time scale of the energy transfer.

τ =
l

v
= turnover time of an eddy of size l ⇒ τ =

1

kv(k)
.

v2(k)

τ (k)
=

v2(k)

1/[kv(k)]
= kv3(k) = ε ,

resulting in Kolmogorov’s spectrum

v(k) = ε1/3k−1/3 ∝ l1/3 , E(k) = k−1v2(k) = ε2/3k−5/3 ,

up to a dimensionless constant of order unity.
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v(k) = ε1/3k−1/3 ∝ l1/3 , E(k) = k−1v2(k) = ε2/3k−5/3 , τ (k) =
1

kv(k)
.

Energy transfer rate:

ε =
v2(k)

τ (k)
=
v2(k0)

τ (k0)
= k0 v

3
0

k0 = energy injection scale
(= integral scale ≈ correlation length),

kd = dissipation scale,

k0 < k < kd, the inertial range
(where the flow is controlled by inertia forces, and where
kinetic energy does not dissipate).

Kinetic energy is injected at k = k0 and cascades to larger k, to be dissipated (converted into heat) at
k = kd.
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The turbulent cascade terminates at k = kd such that

|(~v · ∇)~v| ' |ν∇2~v| ⇒ kdv(kd)2 ' νk2
dv(kd)

⇒ v(kd)

νkd
= Re|k=kd ' 1 .

v0 (kd/k0)−1/3

νkd
= 1 ⇒ kd = k0Re3/4 .

The inertial range k0 < k < kd becomes broader with Re.

However small is ν, motions of the integral scale eventually decay at the time scale

τ0 '
l0
v0
,

the turnover time of the largest eddy:
tubulent motions decay at a time scale independent of viscosity.

Hence, turbulence requires continuous supply of energy even if dissipation is weak.
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4. Interstellar turbulence
Big Power Law in the sky: electron density power spectrum in the ISM (Armstrong et al. ApJ 433, 209, 1995)

E(k) ∝ kn, n ' −5/3

for 1010 cm <∼ l <∼ 1020 cm,
or 10−3 AU <∼ l <∼ 100 pc.

Turbulence observed in/speculated for
the ISM:
l0 ' 100 pc ,

v0 ' csound ' 10 km s−1 ,

τ0 ' l0/v0 ' 107 yr ;

csound = speed of sound (T = 104 K).
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4.1. Energy sources (Mac Low & Klessen 2004)

• Turbulent kinetic energy density:

E = 1
2ρv

2
0 ' 10−12 erg

cm3

( n

1 cm−3

) ( v0

1 km s−1

)2
.

• Magnetic energy density: M =
b2

0

8π
' E.

• Energy dissipation rate per unit mass:

ε ' v3
0

l0
' 3× 10−3 erg g−1 s−1 ,

and per unit volume:

εV ' ρ
v3

0

l0
' 5× 10−27 erg cm−3 s−1 ,

• Energy dissipation time = largest eddy turnover time:

E

εV
= τ0 =

l0
v0

= 107 yr

 l0
100 pc

 ( v0

10 km s−1

)−1
.
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Energy dissipation rate per unit volume: εV ' ρ
v3

0

l0
' 5× 10−27 erg cm−3 s−1 .

• Energy sources of the interstellar turbulence

Driving mechanism εV , erg cm−3 s−1

Supernova explosions 3× 10−26

Stellar winds 3× 10−27

Protostellar outflows 2× 10−28

Stellar ionizing radiation 5× 10−29

Galactic spiral shocks 4× 10−29

Magneto-rotational instability 3× 10−29

H II regions 3× 10−30
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Turbulence driven by supernovae

Supernova remnants: expanding bubbles of hot gas, magnetic fields & relativistic particles

Crab nebula: optical image Tycho supernova: X-rays Cas A: radio image (λ6 cm)

Wright et al., Astrophys. J. 518, 284, 1999
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SN explosions:

• energy release ESN = 1051 erg per SN event,

• one type II supernova per 50 years in the Galaxy, frequency νSN = 0.02 yr−1,

• occur at (quasi) random times and positions.

Supernova blast wave expands at 104 km s−1 (Mach 103 for the first 300 yr),
then pressure equilibrium after 106 yr,
and a hot gas bubble of ' 100 pc in size

Supernova remnants: expanding bubbles of hot gas
that drive motions in the ambient gas when their expansion speed reduces to the speed of sound

Total energy supply rate: εSN =
ESN νSN

V
' 2× 10−25 erg cm−3 s−1 ,

V = 2πR∗h∗ = volume of the star forming Galactic disc, R∗ = 16 kpc , h∗ = 100 pc.

Energy supply required to maintain the turbulence: εV ' ρ
v3

0

l0
' 5× 10−27 erg cm−3 s−1 ,

' 3% of the energy supplied by the SNe is sufficient to drive the interstellar turbulence.
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Turbulent scale = SNR radius in pressure balance with ambient medium

Pressure balance: the (end of the) momentum-conserving (snowplough) phase.

The beginning of the snowplough phase: (Dyson & Williams, The Physics of the Interstellar Medium, IOP, 1997, §7.3.4)

• SNR age, t0 ' 4× 104 yr ,

• SNR radius, r0 ' 25 pc ,

• expansion velocity, ṙ0 = 250 km s−1 ,

• dense, cool shell of interstellar gas swept up by the SNR.

SNR expansion:

r = r0

1 + 4
ṙ0

r0
(t− t0)

1/4

, ṙ = ṙ0

1 + 4
ṙ0

r0
(t− t0)

−3/4

.

ṙ = csound = 10 km s−1 ⇒ r = l0

ṙ = csound ⇒ 1 + 4
ṙ0

r0
(t− t0) =

csound

ṙ0

−4/3

⇒ r = r0

csound

ṙ0

−1/3

' 70 pc .

Conclusion: the integral scale of the interstellar turbulence is l0 = 50–100 pc.
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Efficiency of SN energy conversion (Dyson & Williams, The Physics of the Interstellar Medium, IOP, 1997, §7.3.6)

Kinetic energy of the dense SNR shell:

Eshell = Mshell ṙ
2

=
4π

3
ρ0r

3ṙ2 ,

Mshell = mass of the interstellar gas (density ρ0) swept up by the SNR.

t� t0 ⇒ r '
(
4r3

0ṙ0t
)1/4

, ṙ '
(

1
4r

3
0ṙ0t

−3
)1/4

Efficiency of SN energy conversion in to kinetic energy:

Eshell

ESN
' π

3
√

2ESN

ρ0r
15/4
0 ṙ

5/4
0 t−3/4

' 1.2

t0
t

3/4

' 8% for t/t0 = 40 .
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Conclusions:

• SNe are the most important single source of interstellar turbulence;

• the correlation scale of the turbulence is l0 = 50–100 pc;

• the turbulent speed is comparable to the speed of sound in the ISM, v0 ' 10 km s−1, or can even
exceed it.
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4.2. Observational signatures

• Spectral line broadening via Doppler shifts:

∆νD = ν0


2kBT

mac2︸ ︷︷ ︸
thermal

+
2v2

0

3c2︸ ︷︷ ︸
turbulent



1/2

,

ν0 = central line frequency,
kB = Boltzmann’s constant,
ma = the emitting atom’s mass,
c = speed of light.

Velocity dispersions of interstellar gas scale with the region size l (Larson, MNRAS, 186, 479, 1979;
194, 809, 1981)

δv (km s−1) ' 1.1

 l

1 pc

β , β = 0.4± 0.1

consistently with Kolmogorov’s law v(l) ∝ l1/3.

However, the interpretation of the scaling is controversial (Mac Low & Klessen 2004)

More recently: various statistical studies of velocity and density fluctuations, especially in
molecular clouds (Elmegreen & Scalo 2004a)
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• Radio wave scattering at electron density fluctuations

⇒ scintillation, pulse broadening of pulsar emission

Density fluctuations in weakly compressible turbulence:

δn

〈n〉
' δv

v0
,

density fluctuations have the same power spectrum as v.

Significant effects at small scales, l <∼ 1015 cm.
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5. Magnetohydrodynamic turbulence

Interstellar medium is magnetized, with energy density of magnetic field comparable to the kinetic
energy density of turbulence,

1
2v

2
0 '

1

8π
b2

0 ' 10−12 erg cm−3 = 1 eV cm−3 .

Furthermore,

Rm � Re� 1 , Rm =
lv

η
,

Rm = magnetic Reynolds number,

η = magnetic diffusivity, [η] = cm2 s−1 .

Thus, interstellar turbulence is a magnetohydrodynamic turbulence

(also, the solar/stellar wind turbulence, turbulence in radio galaxies and quasars, etc.)
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5.1. Isotropic Alfvén wave turbulence
(Iroshnikov, Sov. Astron., 7, 566, 1964;
Kraichnan, Phys. Fluids, 8, 1385, 1965)

Governing equations: The Navier-Stokes equation (??) and the induction equation for magnetic field:

∂~B

∂t
= ∇× (~V × ~B)︸ ︷︷ ︸

advection, stretching, compression

+ η∇2~B︸ ︷︷ ︸
diffusion, decay

.

A convenient variable, Alfvén speed at a scale l = 2π/k:

vA(k) =
b(k)√
4πρ

.

Kinetic energy density: E = 1
2ρv

2

Magnetic energy density: M = 1
2ρv

2
A
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Kolmogorov turbulence versus isotropic Alfvén wave turbulence

Fluid turbulence Alfvén wave MHD turbulence
Specific kinetic energy: E = 1

2v
2
0 Specific magnetic energy: M = 1

2vA
2
0

Kinematic viscosity ν Magnetic diffusivity η
Kinetic energy spectrum:
E(k) = 1

2k
−1v2(k)

Magnetic energy spectrum: M(k) = 1
2k
−1v2

A(k)

Turbulent eddy Alfvén wave riding on magnetic field of the largest scale
Constant spectral energy flux:
v2(k)

τ (k)
= ε

Constant spectral energy flux:
v2(k)

τm(k)
=
v2

A(k)

τm(k)
= ε

Spectral energy transfer rate:

τ (k) =
1

kv(k)

Spectral energy transfer rate: τm(k) = τ (k)
τ (k)

τA(k)
, τA(k) =

1

kV A
=

interaction time of Alfvén waves.
V A ≥ v0 ⇒ τA(k) < τ (k), weak interaction

Kolmogorov’s spectrum:
E(k) = ε2/3k−5/3

Iroshnikov–Kraichnan spectrum: v(k) = vA(k) = (vA0ε)
1/4k−1/4 ,

E(k) = M(k) = (vA0ε)
1/2k−3/2 ,

equipartition between kinetic and magnetic energies,
as in a single Alfvén wave.

Dissipation scale:
τ (kd) = νk2

d ⇒ kd = k0Re3/4
Dissipation scale: τm(kdm) = ηk2

dm ⇒ kdm = k0R
2/3
m

 v0

vA0

1/3

.

kd � kdm where Rm � Re, e.g., in the ISM.
Magnetic spectrum in the ISM extends to smaller scales than the velocity spec-
trum.
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5.2. Anisotropic Alfvén wave turbulence
(Sridhar & Goldreich, ApJ, 432, 612, 1994;
Goldreich & Sridhar, ApJ, 438, 763, 1995)

Magnetic field at larger scales introduces anisotropy at smaller scales:

motion along ~b0 is free, but that across ~b0 is hindered

⇒ slow variations along the field are allowed, but the wavelength across the field is small:

k⊥ � k‖ , ⊥= perpendicular to ~b0

⇒ turbulent “eddies” are elongated along ~b0.
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Balance of energy transfer rates across and along ~b0:

k⊥vA(k⊥)︸ ︷︷ ︸
1/τ(k⊥)

' k‖vA0︸ ︷︷ ︸
‖ wave frequency

(1)

Spectral energy cascade mainly occurs in the k⊥-plane, with

ε ' v2
A(k⊥)

τ (k⊥)
= k⊥v

3
A(k⊥) . (2)

Combining (1) and (2), we obtain the aspect ratio of the turbulent cells:

l‖ '
vA0

ε1/3
l
2/3
⊥ ' l

1/3
0 l

2/3
⊥ ,

k⊥
k‖
' (l0k⊥)1/3 ,

with

l0 =
vA

3
0

ε
.

⇒ the spectral anisotropy increases with k⊥.

The resulting energy spectrum in the inertial range:

E(k⊥) = ε2/3k
−5/3
⊥ =

vA
3
0

l0


2/3

k
−5/3
⊥ ,

E(k‖) = ε3/2vA
−5/2
0 k

−5/2
‖ .
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