Galactic winds, magnetic fields, and dynamo action in spiral galaxies

Marita Krause

Max-Planck-Institut für Radioastronomie, Bonn

based on total and polarized radio emission of spiral galaxies of different Hubble types and SFRs

- SFR ↔ magnetic field strength
- Magnetic field structure
- Vertical scale height

De Jong et al. 1985 Chyzy, Bomans, Krause et al. 2007

Equipartition model

Niklas & Beck 1997

Radio-FIR-correlation holds for galaxies with different SFR, even for late-type galaxies.

Equipartition model of radio-FIR-correlation gives globally:

nonthermal total intensity $I_{nth} \sim SFR^{1.3\pm0.2}$ total magnetic field strength $B_t \sim SFR^{0.34\pm0.14}$

Does the large-scale field B_{reg} also depend on SFR?

Polarimetric study of nearby and distant galaxies

Integrated values for 43 nearby spiral galaxies:

→ globally: P decreases with increasing luminosity

B_{reg}/**B**_t decreases with increasing SFR

4.8 GHz luminosity Stil, Krause et al. 2008 Triangles: Virgo Cluster galaxies Circles:

nearby galaxies

Pilot study for 24 distant spiral galaxies with Effelsberg at 6cm , < 2.'5

- -- polarization detected in 14 of them
- -- upper limits given for the others

Large polarimetric survey of ~200 distant spiral galaxies started in August 2009 with Effelsberg at 6cm

4.8 GHz luminosity Mitchell, Stil, Krause et al. 2009

Black: upper limits

 \rightarrow higher SFR increases only B_{r.} B_{rea} decreases with SFR (cf. Detlef's talk)

Magnetic field strengths within NGC 4254

Chyzy 2008

 \rightarrow B_{reg} is locally uncorrelated with SFR

Magnetic field configuration in edge-on galaxies

• **parallel** to the disk along the midplane and

 vertical components at larger radii away from the plane

→ X-shaped magnetic field

Edge-on galaxies with high SFR

NGC253 i =78°

NGC4666 i = 80°

Heesen, Krause, Beck, Dettmar 2009

Soida 2005

Edge-on galaxies with high SFR

NGC5775 i = 86°

Scetch of toroidal disk field and halo field

Soida, Krause, Dettmar 2010

11 edge-on galaxies							
high SFR or starburst					low SFR		
S [FR(IR) M _☆ /yr]	i	type		;	SFR(IR) [M _☆ /yr]	i type
M82	1.8	82°	Irr		M104	< 0.6	84° Sa
N253	6.3	78°	Sc		N3628	0.61	89° Sb pec
N891	3.3	88°	Sb		N4565	0.63	86° Sb
N4217	2 ?	86°	Sb		N5907	0.46	87° Sc
N4631	2.1	86°	SBd				
N4666	1.9	80°	Sc				
N5775	7	86°	Sbc				

All these galaxies have a similar global magnetic field structure,

the only exception is NGC4631.

NGC253 Sc (starburst) i=78°

6cm Eff&VLA TP + Bfield

ASS-field (i=78°) PI + B

6cm Eff&VLA PI + Bfield

Bfield – ASSfield = vertical field

After subtraction of the ASS field:

purly X-shaped field is visible.

Heesen, Krause, Beck, Dettmar 2009

A dynamo generated large-scale magnetic field in disk and halo?

RM (NGC891)

RM (NGC5775)

Large-scale RM-pattern indicates an ASS diskfield. Its poloidal component alone cannot explain the observed vertical fields.

Fig. 9. Polarisation map and poloidal field geometry for a model using the rotation curve parameters of NGC 891 and different wind strengths, for $C_{\Omega} = 1040$, $\varpi_{\Omega} = 0.2$, $\xi = 0.02$, $\alpha_x = 0$, $W_x = 0$. (a) $W_r = 0$, (b) $W_r = 50$, (c) $W_r = 200$

Model calculations of a mean-field $\alpha \omega$ dynamo for a disk (ASS) surrounded by a spherical halo **including a galactic wind** (Brandenburg et al.1993).

NGC253: observational evidence for a galactic wind

Dynamo theory

- Local box simulations of a CR-driven dynamo (Hanasz et al. 2004, 2006)
- Self-consistent local box simulations of a SN-driven turbulent dynamo (Gressel, Elstner et al. 2008)

• First global galactic-scale MHD simulations of the CR-driven dynamo (Hanasz et al. 2009):

 \rightarrow horizontal spiral field &

large lobes of unipolar field in vertical direction

→ X-shaped field structure

NGC4631 3.6cm TP & Bfield

Bfield structure in NGC4631 is different from other galaxies. Why?

NGC4631 (CHANDRA+RGB)

SBd galaxy

 no differential rotation in the central ~5 kpc

NGC4631 3.6cm TP & Bfield

Golla & Wielebinski 1994

rigid rotation up to r < 70" (2.5 kpc)

 \rightarrow no $\alpha\omega$ -dynamo action in the central ~5 kpc.

→dominant vertical fields in this central area as indicated by simulations of Michal Hanasz.

Summary

 Total magnetic field strength B_t and nonthermal emission increase nonlinearly with SFR

 The similar vertical scale heights in galaxies with different SFR imply a relation between CR bulk speed (galactic wind), total field strength B_t and SFR.

Strength of regular magnetic field B_{reg} seems to decrease with SFR.

• Magnetic field structures in edge-on galaxies are very similar, independent of SFR: parallel to the midplane and X-shaped away from the plane \rightarrow Similar field configuration could be attained by the first global, galactic-scale MHD-simulation of a CR-driven dynamo (Hanasz et al. 2009)

→ Hence, a galactic wind may be essential for an effective dynamo action, the observed similar vertical scale heights and X-shaped magnetic field structure in edge-on galaxies.