So You Think You Can Measure Magnetic Fields? Ionospheric effects on polarization

Christopher Watts
University of New Mexico

Kick-off meeting, DFG Research Unit FOR 1254
Kloster Irsee, 3-6 Oct 2010
Review: Measuring Astro B

- Three standard techniques for detecting magnetic fields
 - Zeeman splitting
 - Faraday rotation
 - Synchrotron emission

- All have in common:

Polarization Measurement
Ionosphere Basics

- Region of partially ionized gas at top of Earth's atmosphere
 - Ionization via solar UV & X-ray
 - Mostly O and N atoms & molecules
- Density & temperature increase with height
 - Density peaks ~300 km
- Threaded by Earth's dipole field
 - ~35-50 μtesla
 - Wildly varying dip angle
Plasmas and EM Wave Propagation

- The index of refraction n can be expressed as

$$n^2 = \frac{1}{2} + \frac{(\alpha - 1)(\beta + 2\alpha - 1) \pm \alpha \beta \sqrt{\sin^4 \theta + 4(\alpha - 1)^2 \cos^2 \theta}}{(1 - \alpha - \beta + \alpha \beta \cos^2 \theta)}$$

- Where

$$\alpha = \left(\frac{\omega_p}{\omega}\right)^2; \quad \omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}; \quad \text{plasma frequency}$$

$$\beta = \frac{\omega_c}{\omega}; \quad \omega_c = \frac{eB}{m_e}; \quad \text{cyclotron frequency}$$

n_e: electron (number) density

B: magnetic flux density

θ: angle of the wave vector relative to the magnetic field

- Synopsis

$$n \propto f(n_e, B, \theta)$$

- Plasmas are birefringent
 - Different polarizations travel at different speeds
Alternative Formulation of n

- The index of refraction n can also be written to highlight the superposition of right and left hand modes

$$\tan^2 \theta = \frac{(n^2 - R)(n^2 - L)}{(\frac{R+L}{2} n^2 - RL)(n^2 - P)}$$

- Where

$$R = 1 - \alpha \left(\frac{1}{1 - \beta}\right); \quad \text{Right-hand circularly polarized wave}$$

$$L = 1 - \alpha \left(\frac{1}{1 + \beta}\right); \quad \text{Left-hand circularly polarized wave}$$

$$P = 1 - \alpha; \quad \text{Isotropic wave}$$
Alternative formulation of n

- The index of refraction n can also be written to highlight the superposition of right and left hand modes

$$n^2 = \frac{2PS + (PS + 2LR)\tan^2 \theta \pm \sqrt{(2PD \sec \theta)^2 + (PS - 2LR)^2 \tan^4 \theta}}{2(2P + S \tan^2 \theta)}$$

- Where

$$R = 1 - \alpha \left(\frac{1}{1 - \beta} \right); \quad \text{Right-hand circularly polarized wave}$$

$$L = 1 - \alpha \left(\frac{1}{1 + \beta} \right); \quad \text{Left-hand circularly polarized wave}$$

$$P = 1 - \alpha; \quad \text{Isotropic wave}$$

$$S = L + R; \quad D = L - R$$
Limiting Case: \parallel to Magnetic Field

- In the limit that θ goes to 0°
 \[n^2 \rightarrow L, R \]
 - i.e. an EM wave propagates as pure right- and left-hand modes
- Recall a linearly polarized wave is just $L+R$
 \[\begin{align*}
 E_L & + E_R = \uparrow \\
 E_L & + E_R = \downarrow
 \end{align*} \]
- The different $L&R$ phase speeds lead to Faraday rotation
 \[\begin{align*}
 \alpha_{FR} & = \frac{1}{2} \int \Delta k \, ds = \frac{1}{2} \frac{\omega}{c} \int (n_R - n_L) \, ds \\
 & \approx \frac{C}{\omega^2} \int n_e \bar{B} \cdot d\bar{s}
 \end{align*} \]
Limiting Case: \(\perp \) to Magnetic Field

- In the limit that \(\theta \) goes to 90°
 \[
 n^2 \rightarrow \frac{2RL}{R + L}, P
 \]
 - i.e. two linear modes (x- and o-mode)

- Different phase speeds lead to elliptization
 - Known as Cotton-Mouton effect
 - 2nd order approximation:
 \[
 \alpha_{CM} \approx \frac{C}{\omega^3} \int n_e (\vec{B} \times \hat{k})^2 \, ds
 \]
 - Goes as \(\omega^3, \sin^2 \theta \)
Refractive (Ray Bending) Effects

- Different polarizations take different paths
 - Significant ray bending at low frequencies
Ionospheric Effects: Faraday Rotation

- FR becomes large in ionosphere below ~100MHz
 - Especially for thick ionospheres
 - TEC: Total Electron Content (integrated density along line of sight, $\int n_e ds$)
 - [1 TECU $\equiv 10^{16}$ m$^{-2}$]
- BUT: Typical rotation measures are small: < 2rad/m2
 - Small compared to astro
Ionospheric Effects: Ellipticity

- CM is much weaker than Faraday rotation
 - Due to $\omega^3, \sin^2 \theta$
 - Can be important if there is a region of near-normal incidence
Ionospheric Effects: Refraction/Ray Bending

- Detected radiation in different polarizations samples different parts of the ionosphere
 - Will likely have different phases
 - 10MHz below to emphasize effect
- Leads to both polarization rotation and elliptization
Interferometers and the Ionosphere

- Since both FR and CM are relatively weak – why bother?
- Interferometers make differential measurements
- Earth’s B in Barcelona and Dwingaloo are different
 - Dip angle, $\theta_{\text{Bar}} \sim 55^\circ$, $\theta_{\text{Dwi}} \sim 67^\circ$
 - $\sim 15\%$ difference in FR
 - Can be compensate for: Earth field is known and stable

- More importantly: The ionospheric density is both non-uniform and dynamic
 - Structures of order $>100\text{m}$
 - Variations of 10%; $>100\%$ on large (100km) scales
 - Fluctuation time 10s of seconds to hours
Motivational Slide:

- HF/VHF arrays (VLA, LOFAR, LWA) are extremely sensitive to ΔTEC
 - VLA probes ΔTEC variations to ~100 m, ~1 min, over 20° FoV
Ionosphere Problem @ Long Wavelengths

- Ionospheric effects severely limit resolution & sensitivity
- Current radio interferometers are in regimes 1 & 3.
- LOFAR, etc. are regime 4
 - Spatial variations in the ionosphere across each station beam distort the image

- Each station sees a different direction-dependent blur.
Consequences for Polarization Measurements

- Density fluctuations (spatial and temporal) are primary concern

- Faraday rotation:
 - Different stations will measure different polarizations
 - Variations of 10s of degrees @ 100MHz
 - Looking for changes of 2°/kHz
 - Can change rapidly

- Elliptization:
 - Likely not a problem - unless you’re unlucky
 - In Europe, elevations around 35° elevation, towards north

- Refraction:
 - Likely only an issue below 50MHz
 - Depending on complexity of ionosphere, could destroy polarization
Compensation Approaches

- **Calibrator sources with known, strong polarization**
 - Few known at low frequencies (<300MHz)
 - Must be near source of interest

- **Model ionosphere**
 - Erickson, *et al.* used GPS satellites to measure and correct to better than 4°

- **Use telescope data**
 - Electron density is the critical unknown
 - Work being done on calibration schemes to reconstruct ionosphere
 - LWA plans to use a rapidly scanning calibrator beam
 - 100 sources in 10s
Conclusions

- The ionosphere is a hindrance to polarization (magnetic field) measurements at low frequency
- Density inhomogeneities are primary concern
- Standard correction techniques (calibrator stars) may be insufficient
 - Ionospheric reconstruction may help, if density can be measured sufficiently accurately
 - Personal bias: Someone needs to take a lead in this effort!
- Know Your Limitations!