So You Think You Can Measure Magnetic Fields? Ionospheric effects on polarization

Christopher Watts
University of New Mexico

Kick-off meeting, DFG Research Unit FOR 1254 Kloster Irsee, 3-6 Oct 2010

Review: Measuring Astro B

- Three standard techniques for detecting magnetic fields
 - Zeeman splitting
 - Faraday rotation
 - Synchrotron emission
- All have in common:

Polarization Measurement

Ionosphere Basics

- Region of partially ionized gas at top of Earth's atmosphere
 - Ionization via solar UV & X-ray
 - Mostly O and N atoms & molecules
- Density & temperature increase with height
 - Density peaks ~300 km
- Threaded by Earth's dipole field
 - ~35-50 µtesla
 - Wildly varying dip angle

Plasmas and EM Wave Propagation

 \cdot The index of refraction n can be expressed as

$$n^{2} = \frac{1}{2} + \frac{(\alpha - 1)(\beta + 2\alpha - 1) \pm \alpha\beta\sqrt{\sin^{4}\theta + 4(\alpha - 1)^{2}\cos^{2}\theta/\beta}}{(1-\alpha - \beta + \alpha\beta\cos^{2}\theta)}$$

- Where
$$\alpha = \left(\frac{\omega_p}{\omega}\right)^2$$
; $\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}$; plasma frequency

$$\beta = \frac{\omega_c}{\omega};$$
 $\omega_c = \frac{eB}{m_e};$ cyclotron frequency

 n_{e} : electron/(number) density

B: magnetic flux density

angle of the wave vector relative to the magnetic field

Synopsis

$$n \propto f(n_e, B, \theta)$$

- Plasmas are birefringent
 - Different polarizations travel at different speeds

Alternative Formulation of n

• The index of refraction n can also be written to highlight the superposition of right and left hand modes

$$\tan^2 \theta = \frac{(n^2 - R)(n^2 - L)}{(\frac{R+L}{2}n^2 - RL)(n^2 - P)}$$

- Where

$$R = 1 - \alpha \left(\frac{1}{1 - \beta} \right);$$

$$L=1-\alpha\left(\frac{1}{1+\beta}\right);$$

$$P = 1 - \alpha$$
;

Ey

Right-hand circularly polarized wave

Left-hand circularly polarized wave

Isotropic wave

Alternative formulation of n

• The index of refraction n can also be written to highlight the superposition of right and left hand modes

$$n^{2} = \frac{2PS + (PS + 2LR)\tan^{2}\theta \pm \sqrt{(2PD\sec\theta)^{2} + (PS - 2LR)^{2}\tan^{4}\theta}}{2(2P + S\tan^{2}\theta)}$$

- Where

$$R = 1 - \alpha \left(\frac{1}{1 - \beta} \right);$$

Right-hand circularly polarized wave

$$L = 1 - \alpha \left(\frac{1}{1 + \beta} \right);$$

 $L = 1 - \alpha \left(\frac{1}{1 + \beta} \right)$; Left-hand circularly polarized wave

$$P = 1 - \alpha$$
;

 $P = 1 - \alpha$; Isotropic wave

$$S = L + R;$$
 $D = L - R$

Ey

Limiting Case: || to Magnetic Field

• In the limit that θ goes to 0°

$$n^2 \to L, R$$

- i.e. an EM wave propagates as pure right- and left-hand modes
- Recall a linearly polarized wave is just L+R

The different L&R phase speeds lead to Faraday rotation

$$\alpha_{FR} = \frac{1}{2} \int \Delta k \, ds = \frac{1}{2} \frac{\omega}{c} \int (n_R - n_L) \, ds \approx \frac{C}{\omega^2} \int n_e \vec{B} \cdot d\vec{s}$$

Limiting Case: \(\perp \) to Magnetic Field

• In the limit that θ goes to 90°

$$n^2 \rightarrow \frac{2RL}{R+L}, P$$

- i.e. two linear modes (x- and o-mode)

- · Different phase speeds lead to elliptization
 - Known as Cotton-Mouton effect
 - 2nd order approximation:

$$\alpha_{CM} \approx \frac{C}{\omega^3} \int n_e (\vec{B} \times \hat{k})^2 ds$$

- Goes as w^3 , $\sin^2\theta$

Refractive (Ray Bending) Effects

Different polarizations take different paths

- Significant ray bending at low frequencies

Ionospheric Effects: Faraday Rotation

- FR becomes large in ionosphere below ~100MHz
 - Especially for thick ionospheres
 - TEC: Total Electron Content (integrated density along line of sight, $\int n_e ds$)
 - [1 TECU $\equiv 10^{16} \text{ m}^{-2}$]
- BUT: Typical rotation measures are small: < 2rad/m²

- Small compared to astro

Ionospheric Effects: Ellipticity

- · CM is much weaker than Faraday rotation
 - Due to w^3 , $\sin^2\theta$
 - Can be important if there is a region of near-normal incidence

Ionospheric Effects: Refraction/Ray Bending

- Detected radiation in different polarizations samples different parts of the ionosphere
 - Will likely have different phases
 - 10MHz below to emphasize effect
- Leads to both polarization rotation and elliptization

Interferometers and the Ionosphere

- Since both FR and CM are relatively weak why bother?
- · Interferometers make differential measurements
- · Earth's B in Barcelona and Dwingaloo are different
 - Dip angle, θ_{Bar} ~55°, θ_{Dwi} ~67°
 - -~15% difference in FR
 - Can be compensate for: Earth field is known and stable
- More importantly: The ionospheric density is both nonuniform and dynamic
 - Structures of order >100m
 - Variations of 10%; >100% on large (100km) scales
 - Fluctuation time 10s of seconds to hours

Motivational Slide:

- HF/VHF arrays (VLA, LOFAR, LWA) are extremely sensitive to ΔTEC
 - VLA probes ΔTEC variations to ~100 m, ~1 min, over 20° FoV

Δphase over VLA

Ionosphere Problem @ Long Wavelengths

K

Ionosphere

- Ionospheric effects severely limit resolution & sensitivity
- Current radio interferometers are in regimes 1 & 3.
- LOFAR, etc. are regime 4

 Each station sees a different direction-dependent blur.

- Spatial variations in the ionosphere across each station beam distort the image

Consequences for Polarization Measurements

- · Density fluctuations (spatial and temporal) are primary concern
- Faraday rotation:
 - Different stations will measure different polarizations
 - Variations of 10s of degrees @ 100MHz
 - Looking for changes of 2°/kHz
 - Can change rapidly

Elliptization:

- Likely not a problem unless you're unlucky
- In Europe, elevations around 35° elevation, towards north

· Refraction:

- Likely only an issue below 50MHz
- Depending on complexity of ionosphere, could destroy polarizaiton

Compensation Approaches

- · Calibrator sources with known, strong polarization
 - Few known at low frequencies (<300MHz)
 - Must be near source of interest
- · Model ionosphere

- Erickson, et al. used GPS satellites to measure and correct to better than 4°

- · Use telescope data
 - Electron density is the critical unknown
 - Work being done on calibration schemes to reconstruct ionosphere
 - LWA plans to use a rapidly scanning calibrator beam
 - 100 sources in 10s

Conclusions

- The ionosphere is a hindrance to polarization (magnetic field) measurements at low frequency
- Density inhomogeneities are primary concern
- Standard correction techniques (calibrator stars) may be insufficient
 - Ionospheric reconstruction may help, if density can be measured sufficiently accurately
 - Personal bias: Someone needs to take a lead in this effort!
- Know Your Limitations!