IONOSFERIC REFRACTION AND FARADAY ROTATION

ASTRON-JIVE SUMMER SCHOOL 2010

Student: MONICA TRASATTI

RONALD NIJBOER

OUTLINE:

- INTRODUCTION
- GOALS
- DATA USED
- LOFAR IMAGING PIPELINE
- RESULTS
- CONCLUSIONS

IONOSPHERE

It's a dynamic inhomogeneous medium, with electron density varying as a function of position and time.

The spatial variations in electron density cause local refraction of the wave as it travels through the ionosphere, causing:

• **PROPAGATION DELAY**, that integrated along the LoS results in a phase rotation given by

$$\theta_{ion} \propto \int n(e) dl$$

Depend on **ABSOLUTE TEC** along the LoS

• **FARADAY ROTATION** (rotation of the plane of polarization)

$$\theta_{far} = \mathrm{RM} \ \lambda^2$$

THE EFFECTS ARE FUNCTION OF **POSITION**, **TIME** AND **FREQUENCY**.

CALIBRATION SCENARIOS

Large FOV of elements + large array: The LoS towards each source may experience propagation conditions that differ for different elements in the array.

 Distinct complex gain corrections for each source and each receiving element.

Large FOV of elements + small array: All lines of sight go through the same propagation path but there may be considerable differences in propagation conditions towards distinct sources within the FOV.

Same direction dependent complex gain for all elements.

Selfcalibration/imaging depends on **RELATIVE TEC** which varies rapidly.

GOALS:

• DETERMINE THE PROPERTIES OF THE LARGE SCALE IONOSFERIC TEC DISTRIBUTION BY LOOKING IN TWO DIFFERENT DIRECTIONS

 MEASURE THE IONOSPHERIC RM USING AN INTRINSICALLY POLARIZED SOURCE IN THE FIELD (PSR J0218+423)

LOFAR DATA

L2010_07096:

- Phase center : +02:22:39.6 +43:02:07.7 (**3C66 FIELD**)
- Duration (hrs): 6.00
- Observation time span : 2010-04-24 T08:40:00 2010-04-24 T14:39:58
- Integration time : 3 sec
- Numbers of antenna : 27 (HBA)
- Frequency range : 126 174 MHz

LOFAR IMAGING PIPELINE:

INITIAL FLAG AND COMPRESSION

BLACKBOARD SELFCAL

IMAGING WITH CASA

CLEAN COMPONENTS AS NEW MODEL

FLAGGING AND COMPRESSION

BLACKBOARD SELFCAL (BBS)

BBS REQUIRES:

- 1. A FILE THAT DESCRIBES THE LAYOUT OF THE CLUSTER NODES (EG. SUB4.CLUSTERDESC)
- 2. A .VDS/.GDS FILE THAT DESCRIBES THE CONTENTS AND LOCATION OF THE MSS
- 3. A SKY MODEL THAT DEFINES WHAT BBS WILL ATTEMPT TO REPLICATE DURING CALIBRATION
- 4. A PARSET FILE THAT DEFINES THE SERIES OF OPERATIONS THAT BBS HAS TO PERFORM

IT IS POSSIBLE TO RUN BBS

- ON A SINGLE SB
- DISTRIBUTED WAY ON SEVERAL SBS

Strategy.UseSolver = T

Step.solve.Solve.CalibrationGroups = [n]

IMAGING : CASA SOFTWARE

Task : CLEAN

Widefield mode with 64 wprojection planes

Briggs weighting with robust parameter -2

🔳 💿 portal : trassati <	2>			\odot	\bigcirc
File Edit View S	crollback	Bookmarks	Settings	Help	
ASA <65>: niter=5	0000				
ASA <66>: imagena	me='sb1	0 3C66CLEAN	4'		
		_			
ASA <67>: inp					
clean : Invert	and de	convolve in	nages w	ith selected algorithm	
15	= 'SB	10 A0 1 5b	is.MS' #	# Name of input visibility file	
magename	= 'sb	10_3C66CLEA	N' #	Pre-name of output images	
utlierfile	=		#	Text file with image names, sizes, centers for outl	iers
ield	=		#	Field Name or id	
pw	-		#	Spectral windows e.g. '0~3', '' is all	
electdata	=	False	#	Other data selection parameters	
ode	=	'mts'	#	Spectral gridding type (mfs, channel, velocity, free	juency)
nterms	=	T	#	Number of terms used to model the sky frequency depe	endence
roffrog	_		#	(Note: nterms/1 is under development) Reference frequency for MES (relevant only if nterms	- > 1)
renneg	-			Reference frequency for his (recevant only if ficenis	, , T)
ridmode	= 'wi	defield'	#	Gridding kernel for FFT-based transforms, default='	None
wprojplanes	=	64	#	Number of w-projection planes for convolution	
facets	=	1	#	Number of facets along each axis (main image only)	
iter	=	50000	#	Maximum number of iterations	
ann	=	0.1	#	Loop gain for cleaning	0
nresnola cfmodo	_	o.ozjy lelarki	#	Method of BSE coloulation to use during minor system	. om Jy
magermode	-	CLAIK	#	Options: 'cscleap' or 'mosaic' '' uses psfmode	2
ultiscale	_	[]	#	Deconvolution scales (nivels): [] = standard clean	
nteractive	=	False	#	Use interactive clean (with GUI viewer)	
ask		[]	#	Cleanbox(es), mask image(s), and/or mask region(s)	
msize	=	3600	#	x and y image size in pixels. Single value: same for	r both
ell	=	8	#	x & y cell size(s). Default unit arcsec.	
hasecenter	=		#	Image center: direction or field index	
estfreq	=		#	Rest frequency to assign to image (see help)	
tokes	=	' T '	#	Stokes params to image (eg I,IV, QU,IQUV)	
eighting	= 🦯	briggs'	#	Weighting of uv (natural, uniform, briggs,)	
robust	=	-2	#	Briggs robustness parameter	
npixels	=	Θ	#	number of pixels to determine uv-cell size 0=> field	1 of
			#	VIEW	
vtaper	=	False	#	Apply additional uv tapering of visibilities	
odelimage	=		#	Name of model image(s) to initialize cleaning	
estoringbeam	=	['']	#	Output Gaussian restoring beam for CLEAN image	
bcor	=	False	#	Output primary beam-corrected image	
inpb	=	Θ.2	#	Minimum PB level to use	
already	=	False	#	True required for self-calibration	
sync	=	False	#	If true the taskname must be started using clean(.)

×

CASA <68>: go -----> go() Executing: clean() FIRST IMAGE

Peak: 3.17 Jy noise~8.4 mJy

DR~ 377.4

BETTER IMAGE

Peak: 5.22 Jy Noise ~ 5.2 mJy

DR = 1005

LAST IMAGE

peak = 4.9 Jy noise~ 6 mJy/Beam

DR = 816

DIRECTIONAL DEPENDENT BBS

• Changes in the <u>catalog file</u>:

(Name, Type, PATCH, Ra, Dec, I)
Define source patch (patch position is ignored)
, , 3C66, 02:22:25.5, +43.00.48
, , 3C65, 02:23:43.6, +40.01.16

#Define CLEAN components for the patch Pixel...., POINT, 3C66, ..., ..., ...

Pixel..., POINT, 3C65, ..., ..., ...

• Changes in the <u>parset file</u>:

Strategy.Steps = [solve, correct]

```
Step.solve.Model.DirectionalGain.Enable = T
...
Step.correct.Model.Sources = [3C66] (or [3C65])
Step.correct.Model.DirectionalGain.Enable = T
```

DIRECTIONAL DEPENDENT BBS

NEXT STEP:

New step in the BBS strategy:

```
Strategy.Steps = [solve, subtract, correct]
.....
Step.subtract.Operation = SUBTRACT
Step.subtract.Model.Sources = [...]
Step.subtract.Model.DirectionalGain.Enable = T
```

CONCLUSIONS

- SOFTWARE STILL NEEDS IMPROVEMENTS
- WE CAN GO ON TESTING THE DIRECTIONAL DEPENDENT BBS
- 3C66 FIELD IS A GOOD FIELD TO STUDY THE IONOSPHERIC RM

