

Faraday Depths of Compact Array calibration sources

Carlos Sotomayor

Supervisor: Dr Dominic Schnitzeler

What is the science behind this project?

- Study the properties of cosmic magnetic fields!
- But, WHY?

Magnetism is part of the four fundamental forces.

They are present everywhere ...

- And we don't know much about their fundamental properties:
 - Origin; Structure; Evolution

What is the main goal of this project?

- Calculate Faraday Depths of ATCA calibration sources
- What is this Faraday Depth?

$$\phi(\mathbf{r}) = 0.81 \int_{\text{there}}^{\text{here}} n_{\text{e}} \mathbf{B} \cdot d\mathbf{r} \text{ rad m}^{-2},$$

where n_e is the electron density in cm⁻³, \mathbf{B} is the magnetic induction in μ Gauss, and d \mathbf{r} is an infinitesimal path length in parsecs.

- How do we calculate the Faraday Depth
 - Faraday Rotation Measure synthesis technique

Rotation Measure synthesis

Takes advantage of modern radio telescopes spectral coverage to reliably calculate Faraday depths.

or equivalently,

$$P = pI = Q + iU$$
.

Rotation Measure synthesis

de-rotate the obs. pol. vectors assuming a Faraday depth

Faraday rotation measure spectra

RM NRAO VLA Sky Survey

more than 30,000 RM values at dec. > -40 $^{\circ}$

ATCA calibration sources with dec. < -40°

ATCA calibration sources with good uv coverage

Polarized ATCA calibration sources

Faraday depths of some NVSS sources

Gal. Lat. vs Faraday depth

H_α intensity map of 1352-63

very large DM

an intensity of ~44 Rayleigh

this map ranges from 0-100 Rayleigh

Average magnetic field along the line of sight

NVSS sources: white dots

our 30 sources: purple

crosses

Same figure as before

But the NVSS sources located in Region A are indicated with green points

Same figure as before

But the sources from Region A have been removed

<B_{||}> along positives galactic latitudes look similar than before

Conclusions/Future Work

- At high *b*, Faraday Depth decreases. Is it due to small electron density? weak magnetic fields? or only a effect of the line of sight?
- At low *b*, Faraday Depth increases. LOS effect plays a important role. high electron density. What about the magnetic fields?
- 1352-63 deserves further investigation due to its high Faraday depth. However, H_α map reveals high electron density.
- For positive b the $\langle B_{\parallel} \rangle$ is constant which will be further analysed.

Division/Unit Name

Presenter's name Presenter's title

Phone: XX XXXX XXXX

Email: name.name@csiro.au

Web: www.csiro.au/group

Division/Unit Name

Presenter's name Presenter's title

Phone: XX XXXX XXXX

Email: name.name@csiro.au

Web: www.csiro.au/group

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

