Radio Observations of Magnetic fields

in galaxy clusters

Annalisa Bonafede

Jacobs University Bremen

L. Feretti, F. Govoni, M. Murgia, G. Giovannini, V. Vacca, G.B. Taylor, K. Dolag, M. Brüggen

GALAXY CLUSTERS

HOT GAS (10⁷ - 10⁸ °K)

OPTICALLY-THIN BREMSSTRAHLUNG EMISSION

Soft X

~15% of the Mass

NASA/CXC/MIT/E.-H Peng et al.

Abell 1689

GALAXY CLUSTERS

HOT GAS (10⁷ - 10⁸ °K)

OPTICALLY-THIN BREMSSTRAHLUNG EMISSION

SOFT X

~15% of the Mass

DARK MATTER

REVEALED BY GRAVITATIONAL LENSING

~80% of the Mass

GALAXY CLUSTERS

HOT GAS (10⁷ - 10⁸ °K)

OPTICALLY-THIN BREMSSTRAHLUNG EMISSION

SOFT X

~15% of the Mass

DARK MATTER

REVEALED BY GRAVITATIONAL LENSING

~80% of the Mass

MAGNETIC FIELDS

REVEALED BY RADIO EMISSION

RADIO HALOS

Synchrotron emission on Mpc scale Low surface brightness ~ 1 μ Jy/arcsec² at 1.4 GHz Steep spectrum (α > 1) Usually un-polarized

Origin of the emitting particles?

Particles generated or accelerated everywhere in the cluster

Turbulence? (e.g. Petrosian 2001, Brunetti 2001)

Secondary origin from p-p collisions? (e.g. Dennison 1980, Blasi & Colafrancesco 1999) Difficult to reconcile with present radio and gamma observations

Only two clusters so far:

A2255 z=0.08 Govoni et al. 2005 See also Pizzo et al. 2010

VLA 1.4 GHz, Beam FWHM 25"

Only two clusters so far:

A2255 z=0.08 Govoni et al. 2005 See also Pizzo et al. 2009

MACS J0717 + 3745

z=0.545 Bonafede et al. 2009 See also van Weeren et al. 2009

Chandra [0.1 -2.4 keV] ad VLA 1.4 GHz, Beam FWHM 25"

<u>The magnetic field power spectrum:</u> <u>simple model: single power-law</u>

Р_{200крс} < 1% (ат 1.4 GHz)

<u>The magnetic field power spectrum:</u> <u>simple model: single power-law</u>

Р_{200крс} ~ 3% (ат 1.4 GHz)

<u>The magnetic field power spectrum:</u> <u>simple model: single power-law</u>

Р_{200крс} ~7% (ат 1.4 GHz)

 $|B_k|^2 \propto k^{-n}$

A2255

Govoni et al. 2006

-Power spectrum spectral index: n=2 at the cluster center n=4 at the cluster periphery

Bonafede et al. 2009

-Power spectrum spectral index: n> 3

1.4 GHz

15 ARCSEC RESOLUTION FOR A CLUSTER AT Z~0.2

Intrinsic

Total intensity

0.0001

PUBLING

08.31.03

REAT ASSENSION (2000)

09 30 20

00 30 00

06:51 ID

-0.0001

85 54 00

85 49 00

85 45 00

04.32 00

0.0002

D-DODO

Polarized intensity

REAT ASCENSION (1999)

Noise added

Noise rms ~ 25 μ Jy/beam

Max Vacca et al. 2010

LOFAR: POLARIZED EMISSION FROM RADIO HALOS ?

<u>Chance of detecting polarization at level of</u> <u>few % at least at the higher frequencies</u>

RADIO HALOS: IMPORTANCE OF LOW FREQUENCY OBSERVATIONS

van Weeren, Shulevski , van der Tol, Pizzo, Orrù , Bonafede, Ferrari, Macario **VLA ABELL 2256 (1.4 GHz)** 0 0)

Clarke & Ensslin 2004

and the survey key project team

 $LOFAR \rightarrow$ spectrum over a wide frequency range – radio halo statistics test of the formation scenarios

RADIO RELICS

Radio Relics:

Synchrotron emission on Mpc scale in the cluster outskirts

Low surface brightness ~ 1 µJy/arcsec² at 1.4 GHz

Steep radio spectrum ($\alpha > 1$)

Polarized ~ 20% at 1.4 GHz

Origin of the emission?

Bonafede et al. 2009

different models, they all require shock waves

RADIO RELICS

Radio ghost: aged radio plasma revived by merger or shock wave through adiabatic compression (Ensslin & Gopal Krishna 2001)

→ CURVED RADIO SPECTRUM

 \rightarrow FILAMENTARY OR TOROIDAL MORPHOLOGY

→ POLARIZATION VECTORS PERPENDICULAR TO THE FILAMENTARY STRUCTURE

✤ <u>"Radio gischt"</u>:

Diffusive Shock Acceleration energize cosmic ray electrons that emit synchrotron in magnetic field amplified by shock (Ensslin et al. 98)

> → STRAIGHT RADIO SPECTRUM

> > \rightarrow **Arc-like**

→ POLARIZATION VECTORS PERPENDICULAR TO THE RELIC MAIN AXIS

1 Definition by Kempner et al. (2004)

CLUSTER WITH DOUBLE RADIO RELICS

A2345

z=0.177 Bonafede et al. 2009

VLA AT 1.4 GH, BEAM FWHM = 50"

ROSAT PSPC 0.1 -2 KEV BAND

CLUSTER WITH DOUBLE RADIO RELICS

Mean fractional polarization 24%

Arc-like structure of the relic

"Radio gischt" prediction

Magnetic field aligned with the relic main axis

CLUSTER WITH DOUBLE RADIO RELICS

The Faraday code

Modeling the magnetic field power spectrum

• The vector potential A(k) with a given power spectrum

$$|A_k|^2 \propto k^{-\zeta}$$

Fourier components A(k) Rayleigh distribution phases random

• The magnetic field

$$\widetilde{B}_k = ik \times \widetilde{A}_k$$

FFT \rightarrow B_z in the real space

$$\nabla \cdot \vec{B} = 0$$
$$|B_k|^2 \propto k^{-n}$$

Power spectrum degeneracy (higher n, lower k_{min})

Schuecker et al 04 from pseudo-pressure map KOLMOGOROV POWER SPECTRUM n=11/3

MAGNETIC FIELDS POWER SPECTRUM FROM FARADAY RM

The magnetic field power spectrum

Simulated and observed RM structure function and auto-correlation function

$$|B_k|^2 \propto k^{-n}$$

Observed

Сома

Expected for Kolmogorov Power spectrum, with scales from 2 to 35 kpc

MAGNETIC FIELDS POWER SPECTRUM FROM FARADAY RM

Сома

Bonafede et al. 2010

Govoni et al. 2006

A2382

Guidetti et al. 2008

n = 11/3 Kolmogorov PS Scales up to 30 kpc

n = 2 (center) 4 (periphery) Scales up to 100s kpc

> n = 11/3 Kolmogorov PS Scales up to 35 kpc

OTHER WORKS BASED ON DIFFERENT APPROACHES

HYDRA A Kuchar & Ensslin 2009

Consistent with Kolmogorov PS Single Power law from 0.3 - 8 kpc with no turnover on the large scales

A400 A2634

Vogt & Ensslin 2003

Consistent with Kolmogorov PS

COMA CLUSTER BONAFEDE ET AL. 2010 Best model: B0=4.7 μG, η=0.5

BONAFEDE ET AL. 2010

MAGNETIC FIELD FROM DEPOLARIZATION OF RADIO SOURCES

32 clusters

The most luminous from **HIFLUGCS** catalog **NVSS** data

Cluster center

 \rightarrow higher RM

polarization

Fractional polarization vs cluster projected distance

BONAFEDE ET AL. IN PREP

MAGNETIC FIELD FROM DEPOLARIZATION OF RADIO SOURCES

K S test: P = 0.9

Magnetic field is ubiquitous in galaxy clusters

→No significant difference from this analysis for clusters with and without radio halo

BONAFEDE ET AL. IN PREP

CONCLUSIONS

Magnetic field in galaxy clusters are revealed by radio emission Polarization maps + Farday Rotation allow a reconstruction of the 3D magnetic field

Magnetic field is ubiquitous in galaxy clusters

farthest detection: z=0.55 (Bonafede et al 2009, van Weeren et al. 2009)

Magnetic field strength: $2-5 \mu G$ in non cool-core clusters (central regions)

Profile: $B \sim n_n^{\eta}$ $\eta \sim 0.5$ Coma cluster (Bonafede et al. 2010)

Power spectrum: general agreement with Kolmogorov power-law, scales going to few to 10s 100s kpc

In the next Future:

Possibility of studying polarized emission from radio halos (EVLA and possibly LOFAR)

Magnetic field in low density environments will be revealed by LOFAR HB observations