The Polarized Radio Emission of the Microquasar SS 433 & 3-D Faraday Rotation Imaging

Outlook & Progress

Michael Bell

Torsten Enßlin, Thomas Riller

Max Planck Institute for Astrophysics

Outline

- 'Previous' work
 - The microquasar SS 433
 - VLA Imaging
 - Interpreting the polarized emission
- Current project: 3-D RM imaging
 - Signal reconstruction algorithms
 - Practice w/ 2+1D implementation
 - Generation of test data Hammurabi
 - Reconstruction of test data
- What's next?

Previous Work

Brandeis University John Wardle – Dave Roberts

Observations

- Five VLA A-array observations
- 5 & 8.5 GHz
- Particularly interested in polarized flux
 - Highly polarized
 - Complex EVPA
 structure
 - Very highly polarized emission in off-jet region

Rotation Measure

Rotation Measure

Rotation Measure

What is going on?

- We propose:
 - Jet tube is stretched as material flows outward
 - Jet breaks up due to instability
 - Individual`blobs' elongate

In my free time...

- Still active on this
 - Toy Magnetic field model
 - Publish some results

- Just proposed follow-up eVLA observations
 - C band: Confirm RM structure, observe EVPA transition
 - K band: Observe inner 1" in detail, model will be highly testable

3D RM Synthesis

• RM synthesis and synthesis imaging in one step

$$P(u, v, \lambda^2) \propto \int \int \int F(l, m, \phi) e^{2\pi i(\phi \frac{\lambda^2}{\pi} - ul - vm)}$$

- But first... practice in 2+1D
 - Implement and test algorithms
 - Simulated data set: HAMMURABI

Testing

- Hammurabi (Waelkens et al., 2008)
 - Simulation of galactic synchrotron emission
 - User defined model of B field, CRE, n
- My modifications...
 - Compute dispersion function as we integrate along the L.O.S.
 - Fourier transform gives $P(\lambda^2)$
- Proof of concept with realistic signal
 - Test different reconstruction techniques
 - Later apply to real data: GMIMS survey

Galactic Dispersion Function

Simulated Maps

• Very low resolution

(for now...)

- 50 sq. deg. per pix
- FFT of dispersion function
- Examples

Top: 1.5 GHz

Botton: 500 MHz

174910.58981284

Signal Covariance Matrix

'Observing' the simulations

Reconstruction

Reconstruction, cont.

Reconstruction, cont.

Reconstruction, cont.

Now what...

- Continue to test algorithms
 - Compute S from data (iteratively)
 - How does each perform in specific situations?
- Working with Thomas Riller on LOFAR RM pipeline
- Very soon: Begin development of 3D Imaging software

THANKS!